
Tagging Click-Spamming Suspicious Installs in Mobile
Advertising Through Time Delta Distributions

Juan de Monasterio1

Jampp

Abstract. Fraud in the mobile advertising world is a topic gaining momentum recently.
Different reports agree that invalid traffic is generating losses in the order of billions of
dollars[1] and that there is a significant amount of fraud with ongoing efforts against it[5].
Here at Jampp1 we use an automated fraud detection algorithm for a recent type of
mobile advertising fraud, which can be referred to as click-spamming, click-injection or
mobile-hijacking. We propose a metric to measure suspicious installs, and use a heuristic
to compare the fits of theoretical distributions to this metric. This allows us to derive a
threshold for suspicious installs. Our metric is based on the time-delta distributions, which
amounts to the time it takes from a click in an ad to be converted into an install. The
model is currently in use with satisfactory results. To the best of our knowledge, this is
the first algorithm in production used to tackle this specific kind of fraud.

1 Introduction

The mobile advertising industry consists mostly of two big groups of agents: advertisers and
publishers. Advertisers pay to place their ads on apps owned by publishers. This process of
ad-serving is what is defined as “traffic”. Jampp is a demand-side platform (DSP) that allows
companies to advertise their mobile applications through publishers’ traffic. In short, advertisers
pay to drive traffic from publishers’ apps to their own apps.

The industry is largely composed of business contracts where advertisers agree to pay a sum of
money over a fixed amount of mobile traffic over a given period. Traffic quality is then evaluated
according to the user’s actions in the advertiser’s apps, in response to the ads served. The user
actions will certainly depend on the app in question. However, all of them have one common
in-app-event which is the install, or the app’s first open. In this work we will center our analysis
on these events.

Jampp’s mission is to help companies grow their mobile business by engaging users and
driving new customers. Monthly traffic volume averages around 2.5 billion impressions and 2
million installs on paid traffic. Non-paid traffic, also known as organic traffic2, refers to the
visitors that install or use the advertisers app naturally. This is the opposite of paid traffic, and
amounts to 750 million logs per day.

Similar to the desktop ad industry, there are fraudsters intending to abuse profits of traffic
advertising. This problem has recently spun attention to companies, government[7], NGOs such
as IAB3, MMA4 and MRC5. In this environment, fraud results not only in investment losses but
also in skewed business metrics.

1 www.jampp.com
2 Organic traffic might in fact be paid for by other DSP platforms and not by Jampp, yet we have no

way to distinguish organic traffic from non-Jampp paid traffic.
3 www.iab.com/
4 www.mmaglobal.com/
5 mediaratingcouncil.org/

AGRANDA, Simposio Argentino de GRANdes DAtos

46JAIIO - AGRANDA - ISSN: 2451-7569 - Página 23

2 de Monasterio

In this whole ecosystem, revenue models differ across DSPs and advertisers where the quality
depends on the volume of events generated by the paid traffic.

Events are both app installs and in-app-events (i.e. purchases, taxi rides, etc.).
Contractual agreements set goals on the expected volume of response events that will arise

from an advertiser’s spend. Nowadays, the industry’s most widely used revenue model is cost-
per-install (CPI)[6]. Therefore, there is no pay on the volume of impressions served or on the
clicks caused by them.

For any given transaction, starting from an impression all the way to an in-app-event, there
are various systems put in place to track the response events generated by them. These user
activities are tracked by different agents along the successive chain of actions:

– On the publisher’s side, Jampp is receiving click and impression messages, among other
things. The user’s device ID, publisher, timestamp, context of this click or impression, and
other relevant information are logged and messaged to Jampp.

– On the advertiser’s side, we receive similar logs from user’s installs and events using SDKs
integrated into the apps.

The information of every message is received by our platform, which records and forwards
it, when necessary, to other actors along the chain. Note that, by this definition, any given ad
transaction such as a click or an impression may have multiple response events to that ad. The
same user might install an app and then perform successive in-app-events, all in a time period
brief enough that the same ad transaction is credited or attributed for these actions.

As a short example, we present here a user’s experience in the mobile ad ecosystem for a
hypothetical taxi hailing application.

Publisher’s Side Advertiser’s Side
Impression of Ad→ Click on Ad→ In-App Events

App Install
Registration
Search
Taxi Ride

The general flow of users from an ad in a publisher’s site, the click leads them to the
App/Playstore and, after installing the app, the advertiser would then log users opening the
app as an install. In this hypothetical taxi app, users would then register to use the service and
search for available taxi rides. Finally, they would order a taxi ride.

In reality, what we refer to as impressions, clicks, installs, and in-app events are actually
HTTP requests made between devices and servers, in response to user actions. User’s device IDs,
user-agent and other metadata are URL-encoded in the request and these will bounce around
different servers, between actors in the ecosystem.

The way an advertiser establishes whether an install is due to organic activity or not6 is by
the attribution method. The most widely used method by advertisers is to attribute the app’s
install to the DSP that last sent a user’s click on an ad for that app before installation. Recall
that an “install” is a user’s first open of an app.

At the moment, the industry has established this as an attribution model to determine which
ads deserve the credit for the user actions. The difficulty lies in verifying that a user flow is
genuine, i.e. determining if the publisher’s reports of user actions effectively did happen and
aren’t simulated. In all cases, this means establishing that a real touch on the screen has been
made, in representation for the click or a real ad view, in representation of an impression. Faking

6 Organic events are defined in the industry as events that are not paid for.

AGRANDA, Simposio Argentino de GRANdes DAtos

46JAIIO - AGRANDA - ISSN: 2451-7569 - Página 24

Tagging Click-Spamming Installs... 3

-900 -800 -700 -600 -500 -400 -300 -200 -100 0

-710

Click Company A

-650

Click Company B

-470

Click Company A

-320

Click Company C

-90

Click Jampp

Last click attribution

-90 0

0

Install

Fig. 1. Timeline of user activity, attributing an install to Jampp.

a request is essentially not difficult since, in technical terms, it only means information flowing
between servers and with a specified format. Unlike other industries, fraudulent scenarios are
virtually impossible to determine with absolute certainty. Here, legitimate ad transactions can
be confused with fraudulent ones.

2 Click-Spamming Fraud

Click-Spamming is a type of sophisticated fraud[3], which is defined by the property that
significant human analysis and intervention are needed in order to detect it. It involves a publisher
generating fake user click requests to mis-attribute organic installs and simulate good quality
traffic.

The fraudster’s intent is to steal organic installs by gaming the attribution method. This
is usually done by randomly generating thousands of user’s click requests with computer pro-
grams[4]. The fraudster would then send click requests with different timestamps with a given
user device ID. However, he wouldn’t be able to produce installs requests (clicks before the install
hast taken place), since those can only be generated by the advertiser’s servers, and in a special
URL parameterized format. This install request information is only exchanged between the DSP
and the advertiser. Keeping this in mind, we have that the time difference between the click and
the install occurrence is an uncontrolled random event for the fraudster.

Traditional methods of click-spamming detection involve checking CVR (conversion rate,
i.e. click-to-install rate) and ER (install-to-events rate). With this type of fraud, advertising
campaigns would see huge volumes in clicks and impressions, low CVRs and average in-app-
event rates, when compared to other non-fraudulent publishers. However, there is no certainty
on which levels of rates would label a fraudulent publisher. We can only tag suspicious publisher
activity.

Given this problem setting, we present this as an anomaly detection problem under the
umbrella of unsupervised learning, where we would want to classify instances of suspicious fraud7.

2.1 Time Delta Metric

To counter the fraud effect of click-spamming activity, we derive the Time Delta metric. This
is a simple measurement of an install to detect cases of Click-Spamming. Given a transaction,
the metric δT is t1 − t0 where t0 is the time when the click was made, and t1 is the time when
the app was opened by the user. It is important to note that the idea behind this metric is
that publishers would be in control of the information sent in the fake clicks, yet they will not

7 For a list of available unsupervised learning algorithms for fraud detection, please refer to[2].

AGRANDA, Simposio Argentino de GRANdes DAtos

46JAIIO - AGRANDA - ISSN: 2451-7569 - Página 25

4 de Monasterio

be able to control the information sent in an install message from the advertiser. In practice,
this disorder between click and install timestamps does produce statistical outcomes that are
indicative of fraudulent behavior. Due to this, we focus on the empirical distribution defined by
this metric, in an advertiser’s campaign.

Consider a time window T . Let A be the set of apps (or Advertisers) and, without loss of
generality, consider a to be a generic app. From our installs’ data, we assume that, for any given
instance a ∈ AT (during T), the Time Delta measurements are i.i.d random variables δ1, . . . , δn

8.
That is, if we consider E to be the set of empirical distributions, we have a mapping D : A→ E
such that

a → δ1, . . . , δna

which maps apps to their Time Delta measurements. The idea behind this metric is that, in
general, counting data will statistically appear as a distribution which is exponentially decreasing,
and with long thin tails.

As an example, in Figure 2 we show a non-normalized histogram of this distribution for one
day worth of installs in a group of apps. All Time Delta measurements shown are aggregated
into the same dataset:

Fig. 2. Histogram of non-fraudulent scenario.

8 Where the number of random instances depend on each instance a, and we have dropped the T
notation as it is implicit.

AGRANDA, Simposio Argentino de GRANdes DAtos

46JAIIO - AGRANDA - ISSN: 2451-7569 - Página 26

Tagging Click-Spamming Installs... 5

In our experiments, normal circumstances of the distributions should look as above; with a
sharp decay for the lower values of the metric, and with an almost constant decay for higher
time delta values. Most of the distribution’s mass would be concentrated in smaller Time Delta
values, and a small percentage of the distribution would be spread out in higher values.

This can be explained partly due to the nature of the attribution method. We would expect
a user to click an ad and be redirected to the app store, in order to download and open the app.
As a consequence, most of the users’ installs occur in the first hour after the click.

Late installs would also arrive, and this is for two reasons: high-speed Internet unavailability,
and people that install an app but don’t always open the app after installing it. Added to this,
the attribution would last for days, unless the user clicks in another publisher’s ad for that same
application.

This statistical property in the distributions is ubiquitous across apps of different verticals9,
countries and operating systems. Minor differences arise when looking at different distributions,
though. They will differ in maximum values and in the exact rate of decay.

The difficulty with these type of distributions is that there are no accurate ways of fitting
them with theoretical ones. In our experiments with goodness of fit, we proposed different data
transformations and class of functions as approximators, yet we were not satisfied by the out-
comes.

At the same time, if we focus our analysis on what we believe to be fraudulent publishers,
we find ourselves with different distributions as in Figure 310:

Fig. 3. Example of fraudulent scenario.

We notice here that the empirical distribution has changed substantially. There is no sharp
decay in the distribution, and the data has heavier tails. Also, there is a bulk of users “clicking”

9 Should we explain verticals?
10 Histogram frequencies have been hidden for confidentiality reasons.

AGRANDA, Simposio Argentino de GRANdes DAtos

46JAIIO - AGRANDA - ISSN: 2451-7569 - Página 27

6 de Monasterio

on ads and then opening the app very late in the day. Added to this, there is no reasonable
explanation for this high volume of late installs and this behavior often results in suspicious high
click and impression volumes, with low CVRs and average ERs. All of this raises the flag of
click-spamming.

As a second example of Time Delta distributions, in Figure 4 we look at a scenario where the
distribution is multi-modal. At first, the decay and the distribution seems usual, but then the
large slump at the end does confirm this is a publisher with Click-Spamming activity.

Fig. 4. Second example of fraudulent scenario.

In our data exploration, we found that in fraudulent cases the distributions lack exponential
decay of the distribution, and we start to see other different values of central tendency. We
consider then that a fraudulent distribution is one which doesn’t follow the expected exponential
decay, and we would like to find them as anomalies in our dataset.

Using the ideas outlined earlier in the difference among fraudulent and “normal” distributions,
we proceed to describe an algorithm, using heuristic techniques, that will provide a time threshold
over which our installs are to be considered as suspicious.

3 Click-Spamming Detection

We would like to have a specific threshold F ∈ R in the time window T and, for each a ∈ A,
F will draw the line for suspicious installs. Each time δ > F , it’s a suspicious install for a.

Even though there are arguments in favor of the authenticity of in-app opens coming days
after the click, we can safely assume that a significant part of late installs come from fraudulent
activity.

AGRANDA, Simposio Argentino de GRANdes DAtos

46JAIIO - AGRANDA - ISSN: 2451-7569 - Página 28

Tagging Click-Spamming Installs... 7

Care must be taken, though, not to set a universal value for any application. Install behavior
is varied and, for example, a value which fits for regions with fast Internet access and fast
smartphones will most probably not fit for a mobile market which is still developing.

To do this, we will compare empirical distributions D(aT) to a set of theoretical distributions.
Following exploratory data analysis, we make the assumption that in this set we have distributions
that are either “clean” or “fraudulent”, even though we can not prove this.

Later, we will compare their KL divergence with D(aT) to rank them altogether. With this,
we will have a threshold FT corresponding to the 95th percentile of the best theoretical distri-
bution.11

For the first case we used two distributions known for their exponential decay, namely the
Exponential and the Generalized extreme value distributions. For the fraudulent case we used
two very simple distributions, the Uniform and Chi-squared.

The following list shows the PDF for each distribution.12

– Exponential: λI(x)(x≥0) e
−λx

– Generalized extreme value: 1
σ

(
1 + ξ(x−µσ)

)−ξ+1
ξ e−1+ξ(

x−µ
σ)

– Uniform: 1
b−aI(x)x∈(a,b)

– Chi-squared: I(x)x>0
1

2
k
2 Γ(k2)

x
k
2−1e−

x
2

We use the KL divergence

KL(Q | P) = −
∫
p(x) ln(

q(x)

p(x)
)dx

as a pseudo-metric to assess which distribution is most similar to D(aT), since it measures how
well Q is used as an approximation of P when p and q are their probability density functions
respectively. For our specific case, we will compare each theoretical distribution P with the
empirical distribution Q.

For our objective, the fraudulent distributions might not look like they’ll fit best. But note that
we are not trying to accurately model fraudulent distributions, but rather doing the opposite.
In consequence, we need these distributions to be slightly better fitting than the usual non-
fraudulent distributions. By doing this, a lower selection barrier is being imposed for the usual
distribution to be selected.

Given a ∈ A and a series of time windows T0, . . . , Tn, we will find F1, .., Fn for a as follows:

Data: All installs in (T0, . . . , Tn)
Result: (F1, .., Fn)
i=1; while i ≤ n+ 1 do

Fit the four theoretical distributions (D1, D2, D3, D4) with D(aTi);
Use the KL divergence to rank the best fit Dkl;
if Dkl is non-fraudulent then

Take Fi = q s.t.PDkl(δ < q) = 0.95 ;
else

Fi = NaN
end
i++;

end

11 Other percentiles such as 97th and 93rd had been tried, but this one has given results that are the
most accepted among the system’s users at Jampp.

12 In practice we predefined some of the distribution’s parameters which correspond to distributions
defined in R>0 only.

AGRANDA, Simposio Argentino de GRANdes DAtos

46JAIIO - AGRANDA - ISSN: 2451-7569 - Página 29

8 de Monasterio

The idea is that we would like to take the 95th percentile only for those cases in which the
divergence ranks the non-fraudulent distributions to be best approximated by D(aTi). In this
way, we omit those situations which we deem more fraudulent.

Finally, to aggregate all F1, .., Fn into a single threshold for a, we take the median of the
previous values (excluding the null ones).

For our experiments we used Python 3.5 with Scipy to do the distribution fitting routine.
The setup ran on a standard laptop with a Intel “Core i5” processor (5257U) and 6GB of RAM.

We tried different windows of time for T , using windows between 3 to 7 days of length. We
did this to find the minimum length over which we could single out fraudulent outbreaks from
the rest of the data, without compromising information. Another caveat is that we need to have
enough data in our empirical distribution to use in the KL divergence comparison.

The following images show two examples from different apps where this algorithm was tested.

Fig. 5. Long tailed threshold cut.

Figure 5 shows how this application has all Time Delta values extremely wrapped around its
most minimum values. Here the 95th percentile value is slightly over a day and a half.

In the case of Figure 6, we observe a similar behavior but we find the decay to be much faster.
The tail is much shorter than before and the threshold is set slightly over three hours. Note the
significant difference to the previous case.

Currently, we have placed this algorithm in production with satisfactory results. The adver-
tisers use these data to have an elaborate decision on where to put the threshold F in order to

AGRANDA, Simposio Argentino de GRANdes DAtos

46JAIIO - AGRANDA - ISSN: 2451-7569 - Página 30

Tagging Click-Spamming Installs... 9

Fig. 6. Short tailed threshold cut.

start rejecting installs. In most cases, the loss of potential installs (those which re now rejected)
has been lower than 7% of the whole set.

4 Conclusion

The methods here exposed are a first iteration for fraud detection and classification for Click
Spamming. Note here that we rely on the assumption that for all apps there are periods free
of fraudulent behavior. These periods are then used to calculate our final threshold, which is
robust to data that is contaminated. We are confident on this assumption, since we have seen
that fraudulent behavior from publishers will only last, at most, for a few days. Thus, using at
least one week of data is enough to identify (most) cases of fraudulent behavior.

We find that this algorithm is robust and flexible in accounting for dissimilarities among
applications, where there are significant time differences between Time Deltas. The evaluation
measures this difference by automatically fitting the best distributions for different contexts.

However, as we are operating under an unsupervised learning setting, we cannot systemati-
cally measure the performance of the algorithm. The lack of certainty over which distributions
are fraudulent or not undermines our ability to produce an effective quantification of the al-
gorithm’s error. Yet this algorithm is currently in use internally, with positive feedback from
its users (those managing advertisers’ budgets). Hence, we have seen that the algorithm holds
practical value even if the error rate has not been precisely determined.

This is a specific problem solved by an algorithm which could, in principle, be used in other
contexts such as analyzing specific publisher installs or applications under different contexts.

AGRANDA, Simposio Argentino de GRANdes DAtos

46JAIIO - AGRANDA - ISSN: 2451-7569 - Página 31

10 REFERENCES

References

[1] Ana. The Bot Baseline: Fraud in Digital Advertising. [Online; accessed ¡today¿]. 2016. url:
http://www.ana.net/content/show/id/botfraud-2016 (cit. on p. 1).

[2] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly Detection: A Survey”. In:
ACM Comput. Surv. 41.3 (July 2009), 15:1–15:58. issn: 0360-0300. doi: 10.1145/1541880.
1541882. url: http://doi.acm.org/10.1145/1541880.1541882 (cit. on p. 3).

[3] Media Rating Council. Invalid Traffic Detection and Filtration Guidelines Addendum. [On-
line; accessed ¡today¿]. 2015. url: http : / / mediaratingcouncil . org / 101515 _ IVT %

20Addendum%20FINAL%20%28Version%201.0%29.pdf (cit. on p. 3).
[4] Brad Miller et al. “What’s Clicking What? Techniques and Innovations of Today’s Click-

bots”. In: Proceedings of the 8th International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment. DIMVA’11. Amsterdam, The Netherlands: Springer-
Verlag, 2011, pp. 164–183. isbn: 978-3-642-22423-2. url: http://dl.acm.org/citation.
cfm?id=2026647.2026661 (cit. on p. 3).

[5] Lenin Ravindranath et al. “Automatic and Scalable Fault Detection for Mobile Applica-
tions”. In: Proceedings of the 12th Annual International Conference on Mobile Systems,
Applications, and Services. MobiSys ’14. Bretton Woods, New Hampshire, USA: ACM,
2014, pp. 190–203. isbn: 978-1-4503-2793-0. doi: 10.1145/2594368.2594377. url: http:
//doi.acm.org/10.1145/2594368.2594377 (cit. on p. 1).

[6] John P. Rula, Byungjin Jun, and Fabian Bustamante. “Mobile AD(D): Estimating Mobile
App Session Times for Better Ads”. In: Proceedings of the 16th International Workshop on
Mobile Computing Systems and Applications. HotMobile ’15. Santa Fe, New Mexico, USA:
ACM, 2015, pp. 123–128. isbn: 978-1-4503-3391-7. doi: 10.1145/2699343.2699365. url:
http://doi.acm.org/10.1145/2699343.2699365 (cit. on p. 2).

[7] George Slefo. Senators Take Aim Against Ad Fraud, Ask FTC for Answers. [Online; accessed
¡today¿]. 2015. url: http://adage.com/article/digital/senators-join-fight-ad-
fraud-send-letter-ftc/304897/ (cit. on p. 1).

AGRANDA, Simposio Argentino de GRANdes DAtos

46JAIIO - AGRANDA - ISSN: 2451-7569 - Página 32

