
 1

Abstract—Most software problems arise from deficiencies in the

manner in which software requirements are elicited and
expressed. Ensuring that the Software Requirements Specification
document (SRS) has the necessary quality is crucial to the success
of any software development project, since its information is used
across all project stages. In this paper, we present a semi-
automatic verification tool for SRS documents based on a
comprehensive quality model.

Index Terms— Semi-automatic Verification, Software
Requirements Specification, Software Quality Models

I. INTRODUCTION
HE primary measure for a software-intensive information
system to be successful is the degree in which it meets the

intended purpose. Requirements Engineering (RE) is a subtask
of Software Engineering, which deals with the discovering of
that purpose, by identifying stakeholders and their needs, and
documenting them for their future analysis, communication,
and subsequent implementation [1].

In RE processes there is a continual need for efficiently
managing a great volume of information and knowledge
generated and used during all activities involved in software
development process. Thus, diverse are the challenges that must
be considered when managing requirements-related
information in software development projects. In this sense,
ambiguous requirements must be minimized, since they
produce waste of time and repeated work. The same occurs with
software requirements volatility, where unstable requirements
have significant impact on project performance, regarding time
and effort [2].

Related to this, there exist in the literature diverse proposals
in order to give guidance in the assessment of different
attributes or properties for requirements, which helps in
controlling if their specification is made in a correct way. Most
of these proposals lack of a concrete implementation, or they
are proprietary products of high cost and difficult customization
and configuration.

In this paper, an open-source semi-automatic verification
tool for SRS documents based on a comprehensive quality

This work was supported by Universidad Tecnológica Nacional – Facultad

Regional Santa Fe
• F. Konig is with the Universidad Tecnológica Nacional – Facultad

Regional Santa Fe - Argentina. E-mail: konigfabio@gmail.com.

model is presented.
The paper is organized as follows: Section 2 describes the most
representative software requirements quality models in the
literature. Section 3 describes the tools for evaluating the
quality of the requirements that can be found in the market.
Section 4 presents RQV Tool together with an application case
and finally, Section 5, is devoted to discuss conclusions and
future trends in this area.

II. SOFTWARE QUALITY MODELS
The quality evaluation of software requirements, like any

evaluation process, has to be carried out following a model that
provides a reference frame, in order to formalize the definition
of quality to be associated to a type of software product or
artifact. This allows objectivity in the evaluation of the product
under verification [3][4].

A quality model, in general, is composed by quality
properties to be evaluated through quality indicators [3]. Then,
a requirements quality model is defined as the set of rules
against which a requirements document (syntactic and semantic
rules, structural characteristics for the document and its
sentences) should be evaluated [4].

There are several proposals for requirements quality models.
Some of them, propose a list of desirable quality properties of
requirements [3][5][6][7][8][9][10][11][12] while others,
provide a defect taxonomy, where a defect in requirements
reflects the absence of any of the quality characteristics
[13][14].

It should be considered that, although the quality of the SRS
is attainable, perfection is not. Any of the quality properties can
be achieved, but often at the expense of other properties.
Requirements analysts for each project must agree on which
quality properties are priorities [5].

Table 1 summarizes the proposals that describe quality
models and the specific desirable properties that make them the
most referenced in the literature in the area.

As it can be seen, several quality properties are repeated in
many of these models. Many of them coincide in their names
and descriptions, but others do not. On the other hand, the
analyzed quality models differ in their scope, since some
authors propose quality properties for SRS, while others

• L. Ballejos is with the Centro de Investigación y Desarrollo de Ing. en
Sistemas de Información – UTN-FRSF - Argentina. E-mail: lucianaballe-
jos@gmail.com.

• A. Mariel is with the is with the Centro de Investigación y Desarrollo de
Ing. en Sistemas de Información – UTN-FRSF - Argentina E-mail:
male@frsf.utn.edu.ar.

A semi-automatic verification tool for software
requirements specification documents

Fabio Konig, Luciana Ballejos, and Mariel Ale

T

ASSE, Simposio Argentino de Ingeniería de Software

46JAIIO - ASSE - ISSN: 2451-7593 - Página 75

 2

contemplate quality properties for individual requirements in
the SRS.

It can also be observed that some quality models are more
likely to be automatically verified through specific indicators,
since they propose more specific quality properties and
measurement methods, for example Fabbrini et al. quality
model [3]. On the other hand, other models presented in Table
1 are more general models [5], while others are more limited,
suggesting only a few desirable properties [3][8].

TABLE 1

REQUIREMENTS QUALITY MODELS PROPOSED BY DIFFERENT
AUTHORS

Another particularity detected was that some authors detail
each quality property separately, giving a deeper explanation,
while others group several characteristics into a single property.
For example, Davis et al. [5] distinguish traceable and traced
properties, whereas the IEEE 830: 1998 (R2009) [7] group
these two properties into traceable property.

In addition, not all quality models refer in the same way to
the same property. For example, Genova et al. [6] define the
abstraction property to refer to the design independent property.

It can be concluded then, that it is necessary to select a subset
of quality properties, that is, desirable properties applicable to
the complete requirements document and to individual
requirements contained therein, in order to obtain a unifying
and integral proposal that serves as a quality model for SRS
evaluation. This will allow not only the coherent and concrete
definition of each proper-ty, but also the definition of
quantifiable indicators

A. Comprehensive Quality Model
The evaluation of the software requirements quality has to be

carried out following a model that provides a guidance, in order
to formalize the definition of quality to be associated with a
work artifact, and that provides objectivity in the evaluation of
quality [3][4]. Saavedra [15] proposes a requirements quality
model, selecting a sub-set of desirable quality properties to be
achieved in a SRS. The selection criterion for quality properties
considers, on the one hand, the need for the presence of certain
properties to guarantee the quality of the SRS and its
requirements and, on the other hand, the feasibility of
verification or compliance of such properties.

The properties of the quality requirements model are:
• Unambiguous: A SRS is unambiguous if each re-

quirement stated in it has only one possible interpretation, that
is, if all stakeholders with approximately the same knowledge
about the sys-tem and its context, interpret each requirement in
the same way.

• Understandable: A SRS is understandable if its readers
can easily understand the meaning of all requirements with
minimal explanation.

• Complete: A SRS is complete if it contains the following
elements: 1) All significant requirements; 2) Definition of
software responses to all feasible classes of input data, in all
kinds of realizable situations; 3) Complete labels and references
to all figures, tables and diagrams in the SRS and definition of
all terms and units of measure.

• Correct: An SRS is considered correct if each requirement
contributes to the satisfaction of some need.

• Internally Consistent: An SRS is considered internally
consistent if no subset of requirements de-fined in it has
conflicts.

• Accurate: A SRS is accurate when all the terms used in it
are concrete and well defined.

• Atomic: A requirement is atomic if it describes a single,
coherent event.

• Modifiable: A SRS is considered modifiable if its structure
and style are such that any change can be introduced in an easy,
complete, and consistent manner, without affecting those
characteristics.

• Organized: A SRS is considered organized if its content
allows readers to easily locate information and logical
relationships between adjacent sections are evident. To achieve
a useful organization, a standard should be followed.

• Annotated by Relative Importance: A SRS is considered
annotated/classified by importance if each requirement in it has
an identifier to indicate its importance.

• Annotated by Relative Stability: A SRS is considered

Quality Models
Quality
Properties

D
av

is
 y

 o
tr

os
 (1

99
3)

Fa
bb

ri
ni

 y
 o

tr
os

(2

00
1)

W
ie

ge
rs

 y
 B

ea
tt

y
(2

01
3)

IE
E

E
 8

30
:1

99
8

(R
20

09
) (

20
09

)

L
ou

co
po

ul
os

 y

K
ar

ak
os

ta
s (

19
95

)

W
ils

on
 (1

99
7)

Po
hl

 (2
01

0)

Sw
at

hi
 y

 o
tr

os
 (2

01
1)

G
èn

ov
a

y
ot

ro
s

(2
01

1)

Reachable X X
Annotated by

Relative

Importance

X X X X X X

Annotated by

Relative Stability

X X X X X

Annotated by

Version

X

Correct Level of

Detail

X X

Atomic X X

Complete X X X X X X X X X

Concise X X

Correct X X X X X X X

Cross-references X

Design

Independent

X X X

Electronically

Stored

X

Consistently

Externally

X X X X X

Internally

Consistent

X X X X X X X X X

Modifiable X X X X X X X

No Redundant X X

Organized X X

Precise X X

Interpretable X

Reusable X

Traceable X X X X X X X

Tracing X X X X X

Unambiguous X X X X X X X X

Understandable X X X X X

Updated X

Verifiable X X X X X X X X

ASSE, Simposio Argentino de Ingeniería de Software

46JAIIO - ASSE - ISSN: 2451-7593 - Página 76

 3

annotated/classified by stability if each requirement in it has an
identifier to indicate the stability of that particular requirement.

• Traceability: A SRS is considered traceable (for-ward
traceability) if each of its requirements is easily referenced in
the later development phase or improvement documentation,
i.e.: in all documents generated from the SRS.

• Traceability: A SRS is considered traced (back-wards
traceability) if each one of its requirements has a clear origin,
that is, it is linked to the previous stages of development.

• No Redundant: A SRS is redundant if the same
requirement was specified more than once. Un-like other
quality properties, redundancy is not necessarily bad. It is often
used to increase the readability of the document. However, it
causes problems when the SRS is reviewed. If all occurrences
of a redundant requirement are not modified, then the SRS
becomes inconsistent.

• Concise: A SRS is considered concise if it is as short as
possible, without adversely affecting any other quality property
of the document.

• Correct Detail/Abstraction Level: A SRS can provide
different levels of detail in its content. It is considered good
practice to write requirements in a consistent level of detail.

• Design Independent: A SRS is design independent if there
is more than one system design that implements all the
requirements defined in it. The SRS requirements should tell
what the system should do without saying how it should do it.

• Electronically Stored: A SRS is considered electronically
stored if the entire document was made with a word processor,
was generated from a requirements database, or was
synthesized in some other way.

• Verifiable: A SRS is considered verifiable if every
requirement stated on it can be verified. A requirement is
verifiable if there is a finite and cost effective process with
which a person or machine can verify that the software product
meets the requirement.

The strategy proposed by Saavedra [15] consists of a plan to
implement a set of quality indicators and quality indexes, at
requirements and SRS levels, that allow to measure and
evaluate the quality properties of the requirements model.

The indicators are instruments that allow to quantitatively
express the qualitative SRS and its requirements quality
properties, serving as a guide to evaluate the quality of these
artifacts. The indicators give an indication of how to interpret
the measurement performed.

The existence of a set of indicators allows to objectively know
the quality of requirements and the SRS, also facilitating the
comparison of results. This information, which will be
processed automatically by the tool presented in this paper, is
the basis for detecting the aspects to be improved in the SRS
and its requirements.

On the other hand, quality indices are presented as a complex
grouping of different indicators. Quality level requirement
indexes that allow to measure quantitatively the quality
properties of each requirement (by means of an aggregation of
the results of each indicator that affects the property concerned)
at the level requirement were established in Saavedra [15]
model. These indexes allow the measure of each requirement

quality and determines which of them should be improved and
gives priority for improvement.

Finally, the model also define quality level SRS indexes that
allow to measure quantitatively the quality proper-ties of the
SRS, by means of an aggregation of the results of each indicator
level SRS affecting tested quality property. These indexes allow
the measure of the quality of the SRS and determine
improvements required to achieve a good quality SRS.

The quality indicators proposed in the model are classified
according to the assessment approach that follows its procedure
of measurement.

The evaluation approaches are listed below and the quality
indicators defined for each of them are presented in Table 2:

- Use of natural language patterns: is based on the detection
of keywords, key phrases or symbols, defined in corpus, as
evidence of the failure of certain quality properties. The
indicators that follow this approach son I-1, I-2, I-3, I-4, I-5, I-
6, I-7, I-8, I-9, I-10, I-11, I-12, I-13, I-14, I-15 and I-16.

- Use of domain vocabulary: related to the use of user
vocabulary (glossary) in requirements descriptions. Lexicon
Extended Language (LEL) is used as a glossary, one of the RI
information sources that was selected because of its expressive
power. The indicators that follow this approach are I-29 and I-
30.

- Use of domain knowledge: it considers domain in-
terpretation and semantic knowledge. In this model, LEL is also
used as a knowledge re-source. The indicators that follow this
approach are I-21 and I-32.

- Use of grammatical rules: is based on the identification of
grammatical rules. The indicator that follows this approach is I-
17.

- Use of specific characteristics of a requirement: it con-
siders the detection of specific characteristics of a requirement,
such as: readability, unique identifier, traceability to the origin,
etc. The indicators that follow this approach are I-18, I-22, I-25
and I-26.

- Use of the SRS document-specific features: includes the
analysis of specific SRS characteristics, such as: presence of
sections, readability, etc. The indicators that follow this
approach are I-19, I-20, I-23, I-27, I-28, I-31, I-33 and I-34.

- Use of overlap between requirements: considers re-
quirements referencing the same subject, where can be
distinguished: contradictions between requirements,
redundancy when there is an un-necessary repetition and simple
coupling when there is none of the above, but implies some kind
of dependency relation. The indicator that follows this approach
is I-24.

The indicators proposed have a measurement scope, that is,
some indicators are applied at the requirement level, where can
be found those that apply only to functional requirements (FR)
and those that apply to functional and/or non-functional
requirements (FR/NFR).

On the other hand, indicators that applied at the SRS level -
the complete requirements document-, were also defined. It is
important to mention that the quality indicators defined in this
paper, when they do not meet the established goal for each of
them, negatively affect, directly or indirectly, certain quality

ASSE, Simposio Argentino de Ingeniería de Software

46JAIIO - ASSE - ISSN: 2451-7593 - Página 77

 4

properties of the requirements model, either as a potential
problem or suggestion/warning to improve.

The tool to support this model contemplates the possibility of
enabling / disabling quality indicators according to the
importance of this indicator for the organization or project.

In table 2 are shown, highlighted with an "X" in the
corresponding row and column, the quality properties that are
adversely affected when the evaluation of the quality indicators
it is not satisfactory. In addition, it is highlighted with an "I" in
the corresponding row and column, the quality properties that
are negatively affected indirectly.

III. TOOLS FOR QUALITY ASSESSMENT OF
SOFTWARE REQUIREMENTS

Several tools deal with some form of evaluation of the SRS
requirements quality. Following are the most prominent ones
found in the literature and studied by the RAMP (Requirements
Analysis and Modeling Process) project, which is described
below.

IBM Rational DOORS1 is a commercial-grade, industrial-
use requirements management application developed by IBM
to optimize communication, collaboration, and requirements
verification across an organization. This solution targets
business objectives by managing project scope and cost.
Rational DOORS lets capture, plot, analyze, and manage
changes to information while maintaining compliance with
regulations and standards.

RQA2 is a commercial tool for industrial use, developed by
The Reuse Company in close collaboration with the Knowledge
Reuse Group of the University Carlos III of Madrid that allows
defining, measure, improving and managing the quality of the
specifications of requirements. It was not designed to be a

general requirements management tool, but to operate in
collaboration with other tools. Therefore, it receives the
requirements as input data and calculates quality metrics and
recommendations as output.

LEXIOR3 was developed in France by the company Cortim.
It is of commercial type. It is for industrial use and offers
requirements documents revision services. Documents can be
reviewed during their initial drafting phase, allowing the
identification of recurring document errors and can also be
reviewed during the formal review phase, allowing detailed
error reports to be generated. The LEXIOR document review
service is a turnkey solution.

Requirements Assistant4 is a commercial tool for industrial
use, developed in the Netherlands by the company Sunny
Hills, designed to meet only the criteria: complete, consistent,
feasible and unambiguous, in the requirements phase of a
project. It detects bad requirements, that is, those that contain
words considered diffuse and detect the lack of some type of
non-functional requirement such as reliability, security, and so
on.

DESIRe5 is a commercial tool for industrial use, developed
in Germany by the company HOOD that gives support to
requirements engineers to guarantee the quality of the
requirements in natural language. DESIRe is a method for
automatically identifying words in the requirement text and
indicating predefined questions, observations and information
according to those previously identified words. These
questions, comments and information indicate possible
weaknesses in the requirement. The engineer will then try to
answer the questions raised and if necessary, he/she can rewrite
the content of the requirement. This ensures that the rules of
complete-ness, non-ambiguity and comprehensibility are
respected.

TABLE 2
RELATED QUALITY INDICATORS AND PROPERTIES

Quality Properties

Indicators

U
na

m
bi

gu
ou

s

U
nd

er
st

an
da

bl
e

C
om

pl
et

e

C
or

re
ct

In
te

rn
al

ly
 C

on
si

st
en

t

A
cc

ur
at

e

A
to

m
ic

M
od

ifi
ab

le

O
rg

an
iz

ed

by
 R

el
at

iv
e

Im
po

rt
an

ce

by
 R

el
at

iv
e

St
ab

ili
ty

T
ra

ce
ab

ili
ty

T
ra

ce
ab

ili
ty

N
o

R
ed

un
da

nt

C
on

ci
se

C
or

re
ct

 D
et

ai
l/A

bs
tr

ac
tio

n
L

ev
el

D

es
ig

n
In

de
pe

nd
en

t

E
le

ct
ro

ni
ca

lly
 S

to
re

d

V
er

ifi
ab

le

I-1 level of occurrence of copulative conjunctions
terms X I X I I I I

I-2 level of occurrence of connector terms X X X I I I I
I-3 level of occurrence of ambiguous terms X X I
I-4 level of occurrence of rational terms X X
I-5 level of occurrence of speculative terms X X I
I-6 level of occurrence of subjective terms X
I-7 level of occurrence of negative terms X I I
I-8 occurrence level of parentheses
I-9 level of occurrence of imperatives and optional
terms

X X I

I-10 level of occurrence of continuations terms X X
I-11 level of occurrence of flow control terms I X I I I X I
I-12 level of occurrence in of design terms I X I
I-13 level of occurrence of incomplete terms X I
I-14 level of occurrence of conditional modes X
I-15 level of occurrence of annotation by relative
importance terms X

1http://www-03.ibm.com/software/products/en/ratidoor
2 http://www.reusecompany.com/requirements-quality-analyzer
3 http://www.cortim.com/pageLibre0001010b.html

4 http://www.requirementsassistant.nl/
5http://www.hood-group.com/en/requirements/beratung/
vorgehensentwicklung/desirer/

ASSE, Simposio Argentino de Ingeniería de Software

46JAIIO - ASSE - ISSN: 2451-7593 - Página 78

 5

I-16 level of occurrence of annotation for relative
stability terms X

I-17 level of occurrence of passive voice X
I-18 index of readability at requirement level X I I
I-19 index of readability at SRS level X I I
I-20 level of occurrence of univocally identified
requirements X

I-21 level of occurrence of wrong functional re-
quirement X

I-22 level of occurrence of origin of identified re-
quirements

 X

I-23 level of occurrence of identified origins of
requirements

 X

I-24 Level of occurrence of redundant require-
ments

 I X

I-25 level of occurrence of subject X X X I
I-26 level of occurrence of symbol subject X
I-27 level of organization of the SRS X
I-28 level modifiability of the SRS X
I-29 level of occurrence of domain terms X X I X I
I-30 level of occurrence of acronyms and
abbreviations X X I I

I-31 level of occurrence of incomplete sections of
the SRS X I

I-32 low specification level X X X I
I-33 level of low reference to the domain
vocabulary

 I X I

I-34 level of electronically stored SRS X

QuARS6 is a commercial tool for academic use, developed in
Italy at the University of Pisa, designed to perform a syntactic
analysis of the SRS requirements sentences, specifically a
document in text format written in English language, and
indicate a series of potential error sources in a SRS.

TigerPro7 is an open-source, academic-use tool, developed
in Australia by the University of South Australia, to import and
elicitate requirements that help write good requirements, allow
quick review of documents, ensure the completeness of
requirements contained in multiple paragraphs and conveys the
lessons learned. In addition, this tool can help to correct some
defects in requirements, clarify requirements from the testing
perspective, and point out those requirements that may be
difficult to verify, or written in a way that complicates the
testing. It does not find all the defects in the requirements, but
it goes a great way for the improvement of the written
requirements.

From the tools analysis and the results obtained by the
RAMP project, the following issues can be observed:

• Many of the evaluated tools are commercial, which
implies their acquisition implies certain cost. Related to this,
they have specific software requirements (using proprietary
software) and hardware that limits their installation.

• In some tools, for example RQA which is the most
promising according to RAMP, the input requirements are
limited to specific formats without considering more usual
formats such as txt, doc, pdf, xml.

• Some tools, such as LEXIOR, which are known to be
semiautomatic, require too much human intervention by
reviewers in the process of reviewing requirements documents,
which have to be native English speakers and have industrial
experience in complex systems.

• In general, there is a lack of consideration of the specific
information sources of Requirements Engineering that optimize
the metrics of requirements evaluation , since they provide spe-
cific information of the domain that should be included or

6 http://quars.isti.cnr.it/

considered in the SRS.
As a consequence of the aforementioned issues, arises the need
of the construction of a tool that implements the defined metrics
and indicators, in order to support an automatic evaluation,
promoting the generation of a quality SRS.

IV. RQVTOOL
In order to give support to the Analyst or Requirements
Engineer in the semiautomatic verification of SRS quality, a
tool was developed that implements Saavedra [15] model
presented in 2.1.

The objective of this tool is to automate, within the technical
possibilities, the evaluation of the quality properties of the
requirements quality model proposed by Saavedra [15], using
as input the SRS document and the Extended Language Lexicon
(LEL) as Domain knowledge resource (for cases where it is
available) and incorporating the best practices of what has been
developed so far.
Then, to perform its quality assessment, the tool uses some
control mechanisms:
• Words corpus, phrases and/or key symbols used for the

evaluation of some quality indicators that detect the
presence of natural language patterns.

• ISO / IEC / IEEE 29148: 2011 (ISO / IEC / IEEE, 2011),
which includes IEEE 830: 1998 (R2009) (IEEE, 2009)
used for the evaluation of some quality indicators that are
based on this standard for their calculation procedure.

• Grammar Rules, used in indicators where the presence of
certain grammatical rules is verified.

As a result, RQV Tool calculates:
• Quality indicators (at the request level and at the SRS

level). If these indicators do not meet their target, there is a
potential problem or suggestion / warning to be improved,
with a negative impact (directly or indirectly) on certain
quality properties.

• Quality indices (at the request level and at the SRS level).
They are based on the aforementioned quality indicators,

7 www.therightrequirement.com/TigerPro/TigerPro.html

ASSE, Simposio Argentino de Ingeniería de Software

46JAIIO - ASSE - ISSN: 2451-7593 - Página 79

 6

grouping those indicators that affect a certain quality
property, at a certain level (requirement or SRS). They
provide statistical information as an indication of the
quality of each requirement or the overall quality of the
SRS, for certain quality properties.

Figure 1 shows the above described in schematic form.

Fig. 1. RQVTool Support Tool.

This tool was implemented following the premise of an

OpenSource application. To do this, the Java Platform was used
to create applications in Java programming language, which
offers powerful user interfaces, performance, versatility,
portability and application security.

Another of the premises of this tool is its adaptability, which
is why a 3-layer architecture was used, which is a client-server
architecture with the primary objective of separating business
logic from design logic. The main advantage of this style is that
the development can be carried out in several levels and, in case
of any change, only the required level is modified without
having to check between mixed code.

The layers involved in the RQV Tool architecture (Figure 2)
are:

• Presentation Layer: corresponds to the graphic interface
that the user sees, which communicates and captures
user information with a minimum of process. In this tool
the premise is that the interfaces are user-friendly, that
is, understandable and easy to use. This layer only
communicates with the business layer.

Fig. 2. RQVTool architecture.

• Business Layer: it corresponds to the logic of the
business since it establishes all the rules that must be
fulfilled. In this layer reside the programs that are

8http://nlp.stanford.edu/software/tokenizer.shtml
9 http://stanfordnlp.github.io/CoreNLP/ssplit.html
10 http://nlp.stanford.edu/software/tagger.shtml

executed, the user's requests are received and the
answers are sent after the process. It communicates
with the presentation layer, to receive the requests and
provide the results and with the data layer, to request
the database manager to store or retrieve data from it.
The application programs are also considered here.
Because processing of the SRS and LEL and
evaluating the quality indicators proposed in RQV
Tool requires natural language processing, this layer
works with an integrated set of widely used natural
language processing tools called the Stanford
CoreNLP, whose software distributions are open
source, licensed under the GNU (General Public
License).

• Data layer: this is where the data resides and is
responsible for accessing the data. It consists of a
database manager that performs data storage, receives
requests for storage or retrieval of information from the
business layer. This tool used the object-relational
database management system called PostgreSQL,
distributed under BSD license and with its freely
available source code, which, due to its technical
characteristics, make it one of the most powerful and
robust databases in the database market. RQV Tool uses
this database manager for storing the corpus of words,
phrases and key symbols.

The components / annotators included in Stanford CoreNLP
that were used in RQV Tool are:

• Tokenizer8: This annotator allows you to divide the text
into a sequence of tokens, which correspond
approximately to words. It is used in RQV Tool to
divide the SRS text into words.

• Ssplit9: this annotator takes as input the symbol
sequence generated with "Tokenizer", and divides it
into sentences. RQV Tool uses it to separate in
sentences the text of the SRS, previously divided into
words.

• Part-Of-Speech Tagger (POS Tagger)10: this tagger
identifies within each sentence, expressed in a
particular language, the parts of the sentence for each
word, such as: noun, verb, adjective, etc. Inside RQV
Tool is used to identify, for example, nouns and verbs
in a requirement.

In addition, the Lemmatizator11 component is used and
corresponds to the use of a vocabulary and morphological
analysis of words, with the objective of eliminating the
inflectional terminations and returning the base form of a word,
known as lemma. It provides, for each word, a tree-like
structure that represents the family of that word. This family is
composed of the lemma, which is the root of the tree and the
different conjugations of such lemma or word. That is, words
that are different but belong to the same family of words, are
part of the same tree and share the same lemma.

In RQV Tool the Lemmatizator component is useful for
cases where it is necessary to compare sentences that differ in
the conjugations of some words. It is a way of bringing a word

11http://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-
lemmatization-1.html

ASSE, Simposio Argentino de Ingeniería de Software

46JAIIO - ASSE - ISSN: 2451-7593 - Página 80

 7

or sentence into a canonical form, then comparing it and
determining whether it is the same sentence or not.

Based on the architectural design presented, the main
features of this tool are:

• OpenSource and, therefore, not restricted to a particular
platform, since it was developed using free, non-
proprietary technologies.

• SRS and LEL are accepted as a plain text entry (txt), in
English.

• The SRS should follow the recommendations of ISO /
IEC / IEEE 29148: 2011 (ISO / IEC / IEEE, 2011),
which includes IEEE 830: 1998 (R2009) (IEEE, 2009),
with the requirements univocally numbered.

• Quality indicators are available, at requirement and SRS
level, which, in the event of failure to meet their target,
have a direct or indirect negative effect on certain
quality properties.

• Allows the configuration of Quality Indicators:
- The corpus of key words, phrases or symbols were

defined separately to facilitate their modification or
maintenance, providing functionality for the user to
adapt the terms to their needs.

- It is possible to enable or disable quality indicators
according to the needs of the Analyst or
Requirements Engineer and its organization, thus
selecting which indicators to evaluate.

• Quality indices are available, at requirement and SRS
level, for the different quality properties, which provide
statistical information about the quality of each
individual requirement and the overall quality of the
SRS.

• The tool automatically determines the weights assigned
to each indicator, taking into account whether they
directly or indirectly affect the quality property in
question, following the criterion that the weights of the
indicators with a direct impact on quality property must
represent 70% and those of indirect incidence should
represent 30%.

It is important to highlight that RQV Tool was designed with
the aim of mainly covering the following qualities:

• Easy to use: the tool has to be used with little effort in
terms of user training and time consuming.

• Flexible / Customizable: the tool has to be adaptable in
order to be effective for particular application domains
and allow different quality criteria of organizations.

A. Study Case
The study case used refers to the specification of a Home
Banking System, which corresponds to a technological
evolution of some functionalities of the Automated Teller
Machine (ATM) available in banks.

Home Banking is the service by which electronic banking
transactions can be executed, specifically via private or public
networks such as the Internet.

To make use of this service, the financial institution provides
various types of access to their computer systems, which allow
them to validate the identity of a client and thus allow the use
of their services, which are generally limited for security
reasons.

Usually in a Home Banking service a client can make
balance inquiries, request extracts or account summaries,
transfers between accounts of the same financial institution or
to third parties, and transaction tracking.

In order to show how RQV Tool analyzes the individual
requirements and how it evaluates the indicators and indices at
requirements level, the results obtained with the tool are
presented for a subset of requirements, selected for being
considered interesting due to the indicators that affect.

Fig. 3. Requirement Level Indicators for Requirement 3.2.1.4 in RQVTool.

Finally, the results of indicators and quality indexes at SRS

level obtained with RQV Tool are shown.

The requirement :

"3.2.1.4 The system shall allow the client to consult the UBK."

The indicators detected by RQV Tool to breach its goal are

presented in Figure 3. The indexes at the required level detected
by the tool were (Figure 4):
- Index of annotated requirement by relative importance

= 100% (Bad)
- Index of annotated requirement by relative stability =

100% (Poor)
The rest of the indexes give a value of 0%, that is, its result

is Good.
It can be concluded that requirement 3.2.1.4 is not annotated

for importance and relative stability.

Fig. 4. Requirement Level Indices for 3.2.1.4 Requirement in RQV Tool.

For requirement 3.2.1.18:
"3.2.1.18 The system shall allow the client to request deposit

tickets by selecting an account in a combo box."

ASSE, Simposio Argentino de Ingeniería de Software

46JAIIO - ASSE - ISSN: 2451-7593 - Página 81

 8

The indicators detected by the tool due to its non-fulfillment

of the goal were (Figure 5):
• I-12 level of occurrence in of design terms (Potential

Problem): The requirement has the design term "combo box".
• I-15 I-15 level of occurrence of annotation by relative

importance terms (Suggestion/Warning): the requirement is not
annotated by relative importance.

• I-16 level of occurrence of annotation for relative stability
terms (Suggestion/Warning): The requirement is not annotated
for relative stability.

• I-18 index of readability at requirement level (Potential
Problem): The Flesch readability index of the requirement gives
56.9, so being <60 is considered less legible/understandable.

• I-32 low specification level (Potential Problem): The
requirement has a general term ("account") instead of a specific
one ("current account").
The rest of the indicators meet their target for this requirement,
so they are not detected.

Fig. 5. Requirement Level Indicators of 3.2.1.18 Requirement in RQV Tool.

The indexes at the requirement level identified by the tool

were (Figure 6):
• Non-Ambiguous Requirement Index = 12.50% (Bad)
• Understanding Requirement Index = 33.33% (Bad)
• Correct Requirement Index = 10% (Bad)
• Precise Requirement Index = 10% (Poor)
• Modifiable Requirement Index = 50% (Bad)
• Requirement Index Scored by Relative Importance = 100%

(Bad)
• Annotated Index of Relative Stability = 100% (Poor)
• Correct Requirement Index Abstraction Level / Detail =

33.33% (Bad)
• Independent Design Requirement Index = 35% (Bad)
• Verifiable Requirement Index = 23.08% (Bad)
The rest of the indexes give a value of 0%, that is, its result

is Good.
It can be concluded that requirement 3.2.1.18 is 12.50%
ambiguous, 33.33% unintelligible, 10% incorrect, 10%
inaccurate, 50% unmodifiable, not annotated by importance and
relative stability, 33.33% incorrect Level of abstraction/detail,
35% depending on the design and 23.08% unverifiable.

Fig. 6. Requirement Level Indices of 3.2.1.18 Requirement in RQVTool.

Finally, the quality indicators at the SRS level that the RQV
Tool shows for the complete SRS are (Figure 7):

• I-23 level of occurrence of identified origins of
requirements (Potential Problem): At least one SRS
requirement has no origin, i.e. it does not map to any
impact of any LEL symbol.

Fig. 7. SRS Level Indicators in RQVTool.

• I-24 Level of occurrence of redundant requirements
(Suggestion/Warning): SRS has redundant
requirements.

• I I-27 level of organization of the SRS (Potential
Problem): SRS lacks the "Index" section and the
"Definitions" and "Product overview" sections are in
different order to that set by the ISO / IEC / IEEE
standard 29148: 2011.

• I-28 level modifiability of the SRS (Potential
Problem): SRS is not modifiable because it is not
organized according to the ISO / IEC / IEEE 29148:
2011 (I-27) standard, it has redundant requirements (I-
24), it is non-atomic since at least one requirement has
connector terms (I-2) and at least one requirement has
control flow terms (I-11).

• level of occurrence of acronyms and abbreviations
(Potential Problem): The SRS contains the acronym
"UBK" which was not defined as an LEL symbol.

• level of occurrence of incomplete sections of the SRS
(Potential Problem): there are sections in the SRS that
are incomplete as they have the "TBD" mark.

• I-33 level of low reference to the domain vocabulary
(Potential Problem): in the SRS is made a reference to

ASSE, Simposio Argentino de Ingeniería de Software

46JAIIO - ASSE - ISSN: 2451-7593 - Página 82

 9

a requirement ID not contained in it and has many
entities (nouns in requirements) not defined as LEL
symbols.

The rest of the indicators meet their target for SRS, so they
are not detected by the tool.

Based on the tool assessment presented in Section 3, it can
be observed that the RQV Tool improves many of the issues
detected during the analysis:

• RQV Tool is an OpenSource tool, with little or no
hardware and software limitation for its installation.

• It accepts the SRS in plain text format (txt), with the
advantage that most formats (doc, pdf, xml, etc.) can
be easily converted to txt for processing.

• It does not require the participation of the Analyst or
Requirements Engineer during the verification
process. The Analyst or Requirements Engineer
intervenes at the end of the execution, once the
statistical information is provided as a result of the
verification, to determine and prioritize the
improvements to be incorporated into the SRS.

• It considers the LEL (source of specific information in
the Engineering of Requirements) as resource of
knowledge of the domain.

It solves or improves several of the weaknesses of the
evaluation approaches described in section 2, for example: the
(metric) calculation procedures of the quality indicators were
expressed in such a way that they can be implemented
automatically. On the other hand, for the SRS to be accepted as
input of the tool is not required to be generated by any specific
tool for that purpose. It is only required to comply with the ISO
/ IEC / IEEE 29148: 2011 (ISO / IEC / IEEE, 2011) standard,
which includes IEEE 830: 1998 (R2009) [7].

V. CONCLUSIONS AND FUTURE TRENDS
Within the framework of this paper, "RQVTool" (Re-

quirement Quality Verification Tool), which implements
Saavedra's (2016) software requirements quality model, was
presented.

The objective of this tool is to automate, within the technical
possibilities, the evaluation of the quality properties of the
proposed requirements quality model, using LEL as a
knowledge resource of the domain for the cases where it is
available, that can help in the verification of the quality of the
SRS and incorporate the best practices of the already developed
until the moment.

The proposal follows the trend and integrates many ideas
from other previously developed tools, particularly ARM,
QuARS and RQA.

The RQVTool is useful in the SRS verification process,
which can occur when creating the SRS or verifying its quality,
but before being validated by the client.

RQVTool receives the SRS as an input and, optionally, the
LEL, in plain text and English language format, calculates
quality indicators and indices, at requirement and SRS level,
and outputs quality statistical information.

To perform the quality assessment, the tool uses some control
mechanisms: Corpus of words, phrases and/or key symbols,
ISO / IEC / IEEE Standard 29148: 2011 (ISO / IEC / IEEE,

2011), which includes IEEE 830 : 1998 (R2009) (IEEE, 2009)
and Grammar Rules.

It is implemented with a 3 layer architecture, using in its
business layer the Stanford CoreNLP component for the NLP
of the SRS.

It improves many of the issues identified in the tool
assessment presented in section 3.

It is considered an improvement to incorporate as future work
the possibility that the input documents (ERS and LEL) can be
in other more usual formats, in addition to plain text (txt), such
as: Word (doc), pdf and xml for-mat and the option to change
language.

REFERENCES
[1] Nuseibeh, B.; Easterbrook, S.: Requirements engineering: a roadmap. In: Proc.

Conference on the Future of Software Engineering, pp. 35-46. (2000).
[2] Pfahl, D.; Lebsanft, K.: Using simulation to analyse the impact of

software requirement volatility on project performance. Information and
Software Technology, 42(14), pp. 1001-1008. Elsevier Science B.V.
(2000).

[3] Fabbrini, F.; Fusani, M.; Gnesi, S.; Lami, G. (2001). An Automatic
Quality Evaluation for Natural Language Requirements. In: Proc. 7th
International Workshop on Requirements Engineering: Foundation for
Software Quality, Interlaken, Switzerland.

[4] Gnesi, S.; Lami, G.; Trentanni, G.; Fabbrini, F.; Fusani, M. (2005). An
Automatic Tool for the Analysis of Natural Language Requirements.
International Journal of Computer Systems Science & Engineering, 20(1).

[5] Davis, A.; Overmyer, S.; Jordan, K.; Caruso, J.; Dandashi, F.; Dinh, A.;
Kincaid, G.; Ledeboer, G.; Reynolds, P.; Sitaram, P.; Ta, A.; Theofanos,
M. (1993). Identifying and measuring quality in a software requirements
specification. In: Proc. 1st International Software Metrics Symposium,
pp. 141-152.

[6] Génova, G.; Fuentes, J.M.; Llorens, J.; Hurtado, O.; Moreno, V. (2011).
A Framework to Measure and Improve the Quality of Textual
Requirements. Requirements Engineering, 18(1), pp 25-41.

[7] IEEE (2009). Recommended Practice for Software Requirements
Specifications. IEEE Standard 830-1998 (R2009), Institute of Electrical
and Electronics Engineers.

[8] Loucopoulos, P.; Karakostas, V. (1995). System Requirements
Engineering. McGraw-Hill, Inc. New York, NY, USA.

[9] Pohl, K. (2010). Requirements Engineering: Fundamentals, Principles, and
Techniques. Springer-Verlag Berlin Heidelberg.

[10] Swathi, G.; Jagan, A.; Prasad, Ch. (2011). Writing Software
Requirements Specification Quality Requirements: An Approach to
Manage Requirements Volatility. Int. J. Comp. Tech. Appl., 2(3), 631-
638.

[11] Wiegers, K.; Beatty, J. (2013). Software Requirements, Third
Edition. Redmond, WA: Microsoft Press.

[12] Wilson, W. M. (1997). Writing Effective Requirements Specifications.
Software Technology Conference Proceedings.

[13] Lanubile, F.; Shull, F.; Basili, V. R. (1998). Experimenting with Error
Abstraction in Requirements Documents. In: Proc. 5th
International Symposium on Software Metrics, pp. 114-121.

[14] Schneider, G. M.; Martin, J.; Tsai, W. T. (1992). An Experimental Study of
Fault Detection In User Requirements Documents. ACM Transactions on
Software Engineering and Methodology, 1(2), pp. 188–204.

[15] Saavedra, R. (2016). Framework Para La Verificación Semiautomática De
Especificaciones De Requerimientos De Software, Magister Thesis.

ASSE, Simposio Argentino de Ingeniería de Software

46JAIIO - ASSE - ISSN: 2451-7593 - Página 83

