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Resumen—Time series are valuable sources of information for supporting planning activities. Transport, fishery,
economy and finances are predominant sectors concerned into obtaining information in advance to improve
their productivity and efficiency. During the last decades diverse linear and nonlinear forecasting models have
been developed for attending this demand. However the achievement of accuracy follows being a challenge due
to the high variability of the most observed phenomena. In this research are proposed two decomposition
methods based on Singular Value Decomposition of a Hankel matrix (HSVD) in order to extract components of
low and high frequency from a nonstationary time series. The proposed decomposition is used to improve the
accuracy of linear and nonlinear autoregressive models. The evaluation of the proposed forecasters is
performed through data coming from transport sector and fishery sector. Series of injured persons in traffic
accidents of Santiago and Valparaíso and stock of sardine and anchovy of central-south Chilean coast are
used. Further, for comparison purposes, it is evaluated the forecast accuracy reached by two decomposition
techniques conventionally used, Singular Spectrum Analysis (SSA) and decomposition based on Stationary
Wavelet Transform (SWT), both joint with linear and nonlinear autoregressive models. The experiments shown
that the proposed methods based on Singular Value Decomposition of a Hankel matrix in conjunction with linear
or nonlinear models reach the best accuracy for one-step and multi-step ahead forecasting of the studied time
series.

Index Terms—Singular Value Decomposition, Forecasting, Linear models, Nonlinear Models, Wavelet
Decomposition, Singular Spectrum Analysis.
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1. INTRODUCTION

A time series is a collection of observations
measured sequentially through the time. A time

series is continue when it is collected continuously
over some time interval, whereas it is discrete when
the collection interval is constant. In this work only
discrete time series will be used in order to approach
the vast majority of time series applications. Examples
of discrete time series are (i) the inflation rates during
successive months or years, (ii) the electricity consum-
ption for successive one-hour periods, (iii) the number
of injured people in traffic accidents during successive

days, weeks, months, etc.
It has been demonstrated that time series are valuable
sources of information for supporting planning acti-
vities and designing strategies for decision-making.
Multiple demand coming from diverse sectors such as,
transport, fishery, economy, and finances are concerned
into obtaining information in advance to improve their
productivity and efficiency. Unfortunately often is ob-
served the presence of high variability in a time series,
this situation obey to the presence of trend, seasonal
variation, cyclic fluctuation, or irregular fluctuation.
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During the last decades have been developed nume-
rous forecasting models to explain the behavior of an
observed phenomena. It is well known that an analysis
method works quite well when the variation is domina-
ted by a regular linear trend and/or regular seasonality
[1], complementary a process is called second-order
stationary if its first and second moments (mean and
covariance) are finite and do not change through time,
and when these conditions are not fulfilled the process
is called nonstationary.
Analysis in the frequency domain is usually based
on the examination of cyclical or periodical content.
The methods of the frequency domain are based on
Fourier transform that allow us to identify the number
of frequency components and detect the dominant
cyclic observations. However Fourier transform-based
methods have limitations in that they require an as-
sumption of stationarity and produce no information
associated with time [2]. Whereas the time domain
techniques include the analysis of the correlation struc-
ture, development of models that describe the manner
in which such data evolve in time, and forecasting
future behavior [3].
ARIMA (Autoregressive Integrated Moving Average)
was introduced by Box et al. [4] for forecasting of
nonstationary time series. ARIMA implementations
are observed electricity [6], environment [8], [9], and
tourism [10]. ARIMA implements D processes of
differentiation for transforming a nonstationary time
series in stationary, most time series are stationarized
taking the first difference (D = 1). An ARMA(P,Q)
model is the generalization of an ARIMA(P,D,Q)
model, where P is the order of the autoregressive part
(number of autoregressive terms) and Q is the order
of the moving average part (number of lagged forecast
errors).
On the other hand nonlinear relationships are often
modelled by nonlinear models. The Artificial Neural
Network (ANN) and the Support Vector Machine
(SVM) are popular methods of artificial intelligen-
ce that are implemented in regression problems. For
instance, three typical ANN techniques were probed
by Li and Shi (2010) for one-step ahead wind speed
forecasting [11], after testing, the Back Propagation-
based model was considered the best model for one
site, while the Radial Basis Function was the best
option for other site; the research concludes that it
is not recommended to employ only one type of

ANN model in wind speed forecasting. Another re-
presentative example is the prices variation range,
Laboissiere et al. [12] modeled stock prices of power
distribution companies through an ANN based on
Levenberg-Marquardt (LM), different Multilayer Per-
ceptron (MLP) topologies were evaluated iteratively
with opening and closing prices and other correlated
variables for finding of best configuration for short-
term horizon. An ANN implementation implies to take
some decisions, after several tests, about some para-
meters such as network topology, signal propagation
method, activation function, weights updating, hidden
levels, and numbers of nodes; besides, a specific confi-
guration cannot be generalized, even in similar studies.
Support Vector Regression (SVR) is another type of
nonlinear model, SVR is a parsimonious alternative
for forecasting which uses the same principles as the
SVM introduced by Vapnik [13], and its basic idea is
to use the linear model to implement nonlinear class
boundaries through some nonlinear mapping of the in-
put vector into the high-dimensional feature space; the
unique mathematical formulation of SVR guarantees a
computationally tractable global optimal solution [14].
Hybrid models are a recent solution to deal with
nonstationary processes. Hybrid models combine pre-
processing techniques with conventional linear and
nonlinear models, two of them, widely implemented,
are Singular Spectrum Analysis (SSA) and Discrete
Wavelet Transform (DWT). These techniques extract
components from observed signals, the components
are smoother than the original signal which improve
forecast models.
SSA is a nonparametric spectral estimation method
used to decompose a time series into a sum of trend,
cyclical component, seasonal component, and an irre-
gular component. SSA is defined in four steps, embed-
ding, Singular Value Decomposition (SVD), grouping,
and diagonal averaging [27]. The beginning of the SSA
method is attributable to some authors [28], [29], [30],
the SSA flexibility is favorable to apply it in diverse
areas, such as climatic, meteorological, or geophysics
[31], [32], energy [33], industrial production [34],
tourist arrivals [35], trade [36], and some well-known
time series with different structures and characteristics,
nonstationary, nonlinear and chaotic [15].
The Wavelet theory was originated in 1984 with the
discovery of Grossman and Morlet in the quantum
physics context [16], later Stephane Mallat presented
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Multiresolution Analysis (MRA) to digital signal pro-
cessing [17]. For discrete wavelet analysis, orthogonal
wavelets and biorthogonal wavelets have been com-
monly used, being Daubechies [18] the most popular
wavelet family. In the wavelet domain, the effective
decomposition level must be selected in advance to im-
prove the performance of linear or nonlinear models; a
common practice is to use three decomposition levels.
Wavelet decomposition in conjunction with artificial
intelligence can further improve the efficiency of auto-
regressive models in many areas, such as, hydrology
[19], transportation systems [20], and public health
[21].
In this research are proposed two decomposition met-
hods based on Singular Value Decomposition of a
Hankel matrix (HSVD) in order to extract components
of low and high frequency from a nonstationary time
series. The proposed decomposition is used to improve
the accuracy of linear and nonlinear autoregressive
models. More precisely, the contributions of this work
are the following:

One-step ahead forecasting based on Singular
Value Decomposition of a Hankel matrix for
linear forecasting models.
Multi-step ahead forecasting based on Singu-
lar Value Decomposition of a Hankel matrix
for linear forecasting models.
One-step ahead forecasting based on Singular
Value Decomposition of a Hankel matrix for
nonlinear forecasting models.
Multi-step ahead forecasting based on Singu-
lar Value Decomposition of a Hankel matrix
for nonlinear forecasting models.

This contribution was validated with time series
coming from traffic accidents and fishery stock. Six
time series obtained from CONASET [37] and SER-
NAPESCA were used, they are the following:

1. Weekly sampling from 2003:1 to 2012:12 of
injured persons in traffic accidents in Valpa-
raíso.

2. Weekly sampling from 2000:1 to 2014:12 of
injured persons in traffic accidents in Santiago
due to 10 principal causes related to inap-
propriate behavior of drivers, passengers and
pedestrians.

3. Weekly sampling from 2000:1 to 2014:12 of
injured persons in traffic accidents in Santiago

due to 10 secondary causes related to inap-
propriate behavior of drivers, passengers and
pedestrians.

4. Weekly sampling from 2000:1 to 2014:12 of
injured persons in traffic accidents in Santiago
due to causes related to road deficiencies,
mechanical failures and undetermined causes.

5. Monthly sampling from 1958:1 to 2011:12
of anchovy catches at center-south coast of
Chile.

6. Monthly sampling from 1949:1 to 2011:12 of
sardine catches at center-south coast of Chile.

Systematic comparisons are performed between the
proposed methods with respect to decomposition tech-
niques widely used, Singular Spectrum Analysis and
Stationary Wavelet Transform. More precisely the ele-
ments of comparisons are the following:

Forecasting based on SSA in conjunction with
the AR model.
Forecasting based on SSA in conjunction with
a feedforward ANN based on Levenberg-
Marquardt.
Forecasting based on SWT in conjunction with
the AR model.
Forecasting based on SWT in conjunction
with a feedforward ANN based on Levenberg-
Marquardt.

This work is structured as follows. In section 2 is
Time Series Analysis via Linear and Nonlinear models.
In section 3 is presented Preprocessing Time Series
based on Singular Value Decomposition of a Hankel
matrix (HSVD), Multilevel SVD (MSVD) and Wavelet
Decomposition (SWT). In section 4 are presented a
Case Study for forecasting of traffic accidents, models
AR and ANN based on HSVD, MSVD and SWT are
provided. Finally, from section 6 the works is conclu-
ded and highlighted future directions of the research.

1.1. Objectives

1.1.1. General Objective

Develop two extraction methods of low and high
frequency components from nonstationary time series
for improving the accuracy of linear and nonlinear
forecasting models.
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1.1.2. Specific Objectives
Design a method to extract components of low
and high frequency from time series based
on Singular Value Decomposition of a Hankel
matrix.
Design a method to extract components of low
and high frequency from time series based on
Multilevel Singular Value Decomposition of a
Hankel matrix.
Evaluate the performance of the proposed met-
hods of components extraction in forecasting
of nonstationary time series.
Compare the performance of the proposed
methods of components extraction with res-
pect to Singular Spectrum Analysis and Sta-
tionary Wavelet Transform for forecasting of
nonstationary time series.

1.2. Justification

Strongly nonlinear and nonstationary process pre-
sent high variability that can not be modelled by clas-
sic estimation methods. Conventional models based
on ARIMA and ANNs have been found insufficient
because of the highly complicated nature of a some
time series [22].
The ANNs application has spread to several areas of
knowledge and thus various strategies have been im-
plemented in order to improve their performance. The
ANN performance depends of more than one decisions
such as, the appropriate selection of transfer functions
and activation, the variation in the input dimension,
the number of hidden nodes, and the learning algo-
rithm. There are diverse neural networks architectures
such as feed-forward, recurrent, radial basis, among
others. Unluckily, there is no general methodology or
guideline to determine which neural network is the best
fit for modeling a specific structural analysis problem.
Consequently, the best network is attained through trial
and error [23].
Hybrid models are a recent solution to deal with
nonstationary processes. Hybrid models combine pre-
processing techniques with conventional linear and
nonlinear models, some of them widely implemented
are Singular Spectrum Analysis (SSA), Discrete Wa-
velet Transform (DWT), and Empirical Mode Decom-
position (EMD). These techniques extract components
from observed signals, the components are smoother

than the original signal which improve the forecast
accuracy. Although the flexibility of SSA and DWT
allows their usage in a wide range of forecast pro-
blems, there is a lack of standard methods to select
their parameters. SSA requires an effective window
length for extracting intrinsic components, and DWT
requires to select the wavelet function, which in prin-
ciple is unknown. EMD frequently has the appearance
of mode mixing, which is defined as a single IMF
either consisting of signals of widely disparate scales,
or a signal of a similar scale residing in different IMF
components [24].
This study is justified by the need of decomposition
models that guarantees flexibility for its application on
nonstationary time series and forecasting accuracy via
conventional models.
Furthermore there are time series coming from relevant
sectors as transport and fishery that have been sparsely
researched. More precisely police and government
institutions make monitoring and promote prevention
activities to encourage responsible attitude of drivers,
passengers, and pedestrians for avoid the occurrence
of traffic accidents. Whereas fishery industry makes
monitoring of marine species for controlled fishing.

1.3. Research Question
Is it possible to improve the accuracy of
conventionally accepted linear and nonlinear
forecasting methods?
Can the Singular Value Decomposition techni-
que to enhance the performance of conventio-
nally accepted decomposition techniques?

1.4. Hypothesis
The extraction methods of low and high fre-
quency components based on Singular Value
Decomposition of a Hankel matrix achieve
more accuracy in multi-step ahead forecasting
than methods based on Singular Spectrum
Analysis and Stationary Wavelet Transform.

The hypothesis will be validated by means of compu-
tational simulation based on nonstationary time series
coming from traffic accidents and fisheries stock.

2. TIME SERIES ANALYSIS

The idea of deterministic time series was a contri-
bution of Yule in 1927, which launched the notion that
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every time series can be regarded as the realization of
a stochastic process. The concepts of Autoregressive
(AR) and Moving Average (MA) models were also
formulated by Yule.
Linear autoregressive models are not able to deal
with two features in several series, nonlinearly and
nonstationarity. ARIMA model proposed by George P.
Box and Gwilym M. Jenkins in their book published
in 1970 presented an alternative to overcomes a part of
the problem. ARIMA transforms a nonstationary time
series in stationary through differentiation processes,
however the nonlinearly follows present.
Artificial Neural Networks (ANNs) were originated in
1943 by McCulloch and Pitts. The first ANN, known
as Perceptron, which was a linear model with connec-
tions of fix weight. As the Perceptron was not able
to generalize the learning with nonlinear functions,
Rumelhart and McCelland presented Backpropagation
(BP) algorithm for a Multilayer Perceptron (MLP).
Backpropagation have been extensively applied since
its creation. From BP new algorithms based on the
descent method have been discovered to accelerate the
convergence.
On the other hand, time series preprocessing has gai-
ned popularity in the last decade. Data preprocessing
contributes highly in the performance of forecasting
models. Preprocessing prepares the data for forecas-
ting.
Singular Value Decomposition is a data preprocessing
technique with almost one century of history [39].
However, actually SVD follows being used for diverse
purposes. Popular application of SVD are denoising,
features reduction, and image compression. Important
advances have been also observed for signal-noise
separation.
Singular Spectrum Analysis and Wavelet Decomposi-
tion in this research are techniques used to validate our
proposal.
In certain situations, it may be difficult to ascertain
whether or not a given series is nonstationary. This
is because there is often no sharp distinction between
stationarity and nonstationarity when the nonstationary
boundary is nearby. In the Box-Jenkins methodology,
the Autocorrelation Function (ACF) is often used for
identifying, selecting, and assessing conditional mean
models (for discrete, univariate time series data).

2.1. Linear Autoregressive Models

Linear time series modelling are commonly asso-
ciated with a family of linear stochastic models which
are referred as ARIMA (Autoregressive Integrated
Moving Average) models. ARIMA is also known as
Box-Jenkins methods due to the work of George P. Box
and Gwilym M. Jenkins. ARIMA is in fact a culmi-
nation of the research of many prominent statisticians,
starting with the pioneering work of Yule in 1927, who
employed an Autoregressive (AR) model of order 2 to
model yearly sunspot numbers.
Time series analysis by means of linear models are
conditioned to deal with stationary data or at least
weakly stationary. Stationary models assume that the
process remains in statistical equilibrium with pro-
babilistic properties that do not change over time, in
particular varying about a fixed constant mean level
and with constant variance.
Most naturally generated signals are nonstationary, in
that the parameters of the system that generate the
signals, and the environments in which the signals
propagate, change with time and/or space [7]. Some
researches consider that natural processes are inhe-
rently nonstationary, although apparent nonstationarity
in a given time series may constitute only a local
fluctuation of a process that is in fact stationary on
a longer time scale or viceversa.
There are some methods to convert a nonstationary ti-
me series in stationary. ARIMA implements D proces-
ses of differentiation, most time series are stationarized
taking the first difference (D = 1). An ARMA(P,Q)
model is the generalization of an ARIMA(P,D,Q)
model, where P is the order of the autoregressive part
(number of autoregressive terms) and Q is the order
of the moving average part (number of lagged forecast
errors).
The simplest analysis is performed through an autore-
gressive model of order P and with i.i.d. innovations
ε (having zero mean and at least finite second-order
moments) for the data-generating process,

X̂(n+1) =
P

∑
i=1

αiZi + ε(n+1), (1)

where P is the model order, αi is ith coefficient and Zi
is the ith regressor vector.
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An ARMA (P,Q) model is defined with

X̂(n+1) =
P

∑
i=1

αiZi +
Q

∑
i=1

βiεi + ε(n+1), (2)

where X̂(n + 1) is the future value of the observed
time series, αi is the i-th coefficient of the AR term
Zi. βi denotes the ith coefficient of the MA term εi
and ε(n+1) is a source of randomness which is called
white noise. The AR terms Zi are the columns of the
regressor matrix Z= (Z1, . . . ,ZP).
The coefficients of AR and ARMA models have been
commonly estimated by Least Squares (LS) method
and by Maximum Likelihood Estimation (MLE). On
the one hand LS computes the parameters that provide
the most accurate description of the data, the sum of
square errors computed between observed values and
estimated values must be minimized. On the other hand
MLE is a method to seek the probability distribution
that makes the observed data most likely.
Least Squares method is one of the oldest technique of
modern statistics which origin is related with the work
of Legendre and Gauss. In a standard formulation,
a set of pairs of observations x,y, is used to find a
function that relates the observations. A linear function
is defined to estimate the values of a set of dependent
variables Y from the values of independent variables
X , as follows:

Ŷ = a+bX , (3)

where a is the intercept and b is the slope of the
regression line. If the intercept is zero, the equation
is reduced to

Ŷ = bX . (4)

The LS method estimates the b parameters according
to the rule that those values must minimize the sum
of residual squares computed between the observed
values and the predicted values,

ε =
N

∑
i=1

(yi− ŷi)
2, (5a)

=
N

∑
i=1

(yi−bxi)
2, (5b)

where ε is the value to be minimized. Taking the
derivative of ε with respect to b, and setting them to
zero gives the following equation:

∂ε

∂b
=

∂ (∑i(y2
i −2bxiyi +b2x2

i ))

∂b
, (6a)

b =
∑i xiyi

∑i x2
i
. (6b)

Extending the solution to a higher degree polynomial
is straightforward. In matrix form, linear models are
given by the formula

X̂ = αZ, (7)

where X is a N×1 vector of results (for univariate time
series), α is a P× 1 vector of coefficients (with P <
N), and Z is the regressor matrix of N×P dimension,
which is named design matrix for the model.
The Moore-Penrose pseudoinverse matrix [40] X† is
computed to obtain the coefficients matrix α , it is

α = Z†X . (8)

In general, LS estimates tend to differ from MLE
estimates, especially for data that are not normally
distributed such as proportion correct and response
time.
Maximum Likelihood Estimation (MLE) was first in-
troduced by Fisher in 1922, although he first presen-
ted the numerical procedure in 1912. MLE consists
of choosing from among the possible values for the
parameter, the value which maximizes the probability
of obtaining the sample which was obtained [41].
In the practice, from original observations (yi for
i = 1, . . . ,N) through an ARIMA(P,D,Q) model
is generated a new differentiated series X(n) =
x1, . . . ,xN . The parameters set is defined with θ =
(α1, . . . ,αP,β1, . . . ,βQ,σ

2). The joint probability den-
sity function (PDF) is denoted with

f (xN ,xN−1, . . . ,x1;θ). (9)

The likelihood function is this joint PDF treated as a
function of the parameters θ given the data X(n):

L(θ |X) = f (xN ,xN−1, . . . ,x1;θ). (10)

The maximum likelihood estimator is

θ̂ = arg max L(θ |X(n)), θ ∈Θ, (11)

where Θ is the parameters space. The term arg max
refers to the arguments at which the function output is
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as large as possible.
For simplifying calculations, it is customary to work
with the natural logarithm of L, which is commonly
referred to as the log-likelihood function. Because
the logarithm is a monotonically increasing function,
the logarithm of a function achieves its maximum
value at the same points as the function itself, and
hence the log-likelihood can be used in place of the
likelihood in maximum likelihood estimation and
related techniques. Finding the maximum of a function
often involves taking the derivative of a function and
solving for the parameter being maximized, and this
is often easier when the function being maximized
is a log-likelihood rather than the original likelihood
function.
MLE is preferred to LS when the probability density
function is known (generally normal) or easy to
obtain through computable form. There is a situation
in which LS and MLE intersect. This is when
observations are independent of one another and are
normally distributed with a constant variance. In this
case, maximization of the log-likelihood is equivalent
to minimization of SSE, and therefore, the same
parameter values are obtained under either LS or MLE
[25].

2.2. Artificial Neural Networks

The first Artificial Neural Network was proposed
by McCulloch and Pitts in 1943, it was designed to
use connections with a fixed set of weights. In the
early 1960s, some researchers among them Rosenblatt,
Block, Minsky and Paper developed a learning algo-
rithm for a device known as Perceptron which conver-
gence was warranted if the connections weights could
be adjusted. In 1969 Minsky and Papert, determined
that the Perceptron was not able to generalize the
learning with nonlinear functions. The limitation of the
Perceptron, paralyzed for a long time the researching
in the field of ANNs.
Between 1980 and 1986, the PDD group consisting of
Rumelhart and McCelland, publish the book Parallel
Distributed Processing: Explorations in the Micros-
tructure of Cognition. Backpropagation (BP) algorithm
was shown in the publication as an algorithm for
multilayer and nonlinear neural network known as
Multilayer Perceptron (MLP).

Artificial Neural Network (ANN) is commonly used
for referencing a MLP. ANN is in general an infor-
mation processing system that has certain performance
characteristics in common with biological neural net-
works.
The performance of an ANN depends of different
elements, such as, structure, activation function and
learning algorithm. Classification, prediction, and ima-
ges recognition are common tasks of an ANN. The
power of an ANN approach lies not necessarily in
the elegance of the particular solution, but rather in
the generality of the network to find its own solution
to particular problems, given only examples of the
desired behavior [26].
The common structure of an ANN has three layers,
input, hidden, and output [26]. The presence of a hid-
den layer together with a nonlinear activation function,
gives it the ability to solve many more problems than
can be solved by a net with only input and output
layers.
An autoregressive ANN of three layers uses the lagged
terms zi at the input layer, they are weighted with
respect to the hidden layer, at the output of the hidden
layer is applied the activation function. At the output
layer is obtained the estimated value X̂(n+1),

X̂(n+1) =
Q

∑
j=1

b jYH j, (12a)

YH j = f

(
P

∑
i=1

w jizi

)
, (12b)

where Z1, . . . ,ZP are the input neurons, and
w11, . . . ,wP1, . . . ,wPQ are the nonlinear weights of
the connections between the inputs and the hidden
neurons. Whereas b1, . . . ,bQ are the weights of the
connections between the hidden neurons and the output
(under the assumption that there is an unique output).
The common activation function is sigmoid, which is
expressed with

f (x) =
1

1+ e−x (13)

The ANN for an univariate process is denoted with
ANN(P,Q,1), with P inputs, Q hidden nodes, and 1
output. The parameters wi j and b j are updated during
the training via learning algorithm. At each iteration
the weights are adapted to reach the minimization of
the errors.



8

The learning algorithms are gradient-based and
gradient-free (or derivative-free). Algorithms of first
order are those where the first derivative of the objec-
tive function is computed to adapt the neural network
weights, whereas algorithms of second order are those
that compute the second derivative.
Backpropagation is a gradient-based also known as
steepest-descent algorithm which repeatedly adjusts
the weights of the connections in the network so as
to minimize a measure of the difference between the
actual output vector. Standard steepest descent is given
below,

∆ω
t = lr

∂Et

∂ω t , (14a)

ω
t+1 = ω

t −∆ω
t , (14b)

where ∆ωt is called delta rule, and determines the
amount of weight update based on the gradient di-
rection along with a step size. ω is the matrix of
weights and bias, t is the number of epoch (repetition),
lr is the learning rate (in standard steepest descent
BP, lr is constant). E is the Performance Function
which is arbitrary (E generally has a quadratic form,
by example Mean Square Error MSE). The neural
network is trained until the stopping criteria is reached;
stop criteria might be the number of epochs, the
maximum iteration time, the minimum level of error
performance, or the performance gradient falls below
the minimum gradient predefined.
Backpropagation with adaptive learning and momen-
tum coefficient is a improved version of conventional
BP. The momentum coefficient and the learning rate
are adjusted at each iteration to reduce the training
time,

∆ω
t = mc∂ω

t−1 + lrmc
∂Et

∂ω t , (15)

where ∂ω t−1 is the previous change to the weights
(or bias), and mc is the momentum coefficient. The
training stops when any of the criteria that where
defined for standard BP occur.
The main disadvantage of conventional gradient-
descent method is the slow convergence. Whereas for
the improved BP version, the momentum parameter is
equally a problem dependent as the learning rate, and
that no general improvement can be accomplished.
However, since the algorithm employs the steepest
descent technique to adjust the network weights, it

suffers from a slow convergence rate and often pro-
duces suboptimal solutions, which are the two major
drawbacks of BP. Steepest descent method presents
accelerated convergence through adaptive learning rate
and momentum factor.
Marquardt in 1963 published a method called maxi-
mum neighborhood to perform an optimum interpola-
tion between the Taylor series method and the gradient
method to represent a nonlinear model.
Levenberg-Marquardt (LM) is a second order algo-
rithm that outperforms the accuracy of the gradient-
based methods for a widely variety of problems.
The scalar u controls the LM behavior. If u increases
the value, the algorithm works as the steepest des-
cent algorithm with low learning rate; whereas if u
decreases the value until zero, the algorithm works as
the Gauss-Newton method. The weights of the ANN
connections are updated with:

ω
t+1 = ω

t −∆ω
t (16a)

∆ω
t =
[
JT (ω t)J(ω t)+ut I

]−1
JT (ω t)ε(ω t), (16b)

where ∆ω t is the weight increment, J is the Jacobian
matrix, T is used to transposed matrix, I is the identity
matrix, and ε is the error vector.
The Jacobian matrix is created with the computation of
the derivatives of the errors, instead of the derivatives
of the squared errors,

J =



∂e1,1
∂w1,1

∂e1,1
∂w1,2

. . .
∂e1,1
∂wP,H

∂e1,1
∂b1

. . .
∂e2,1
∂w1,1

∂e2,1
∂w1,2

. . .
∂e2,1
∂wP,H

∂e2,1
∂b1

. . .

...
...

...
...

∂eP,1
∂w1,1

∂eP,1
∂w1,2

. . .
∂eP,1
∂wP,H

∂eP,1
∂b1

. . .
∂e1,2
∂w1,1

∂e1,2
∂w1,2

. . .
∂e1,2
∂wP,H

∂e1,2
∂b1

. . .

...
...

...
...


(17)

The activation function is an important element in an
ANN used to reach excitation at hidden layer or at out-
put layer. The choice of an activation function depends
on how it is required to represent the data at the output.
A sigmoid activation function increases monotonically
on real numbers and have finite limits in the whole
interval, a requirement to have a positive derivative
at every real point. Sigmoid activation functions and
Levenberg-Marquardt are commonly observed in fore-
casting models based on ANNs in diverse areas.
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3. TIME SERIES PREPROCESSING

Singular Value Decomposition is an old technique
that has long been appreciate in the theory of
matrices. Stewart in 1993 present the early history
of SVD, which distinguishes the contributions of
five mathematicians, Beltrami and Jordan (1873 and
1874), Sylvester (1889), Schmidt (1907) and Weyl
(1912).
The SVD is closely related to the spectral
decomposition [39]. It was discovered that SVD
can be used to derive the polar decomposition of
Autonne (1902) in which a matrix is factored into the
product of a Hermitian matrix and a unitary matrix.
SVD was initially applied for square matrices and
after with the work of Eckart and Young in 1930, it
was extended to rectangular matrices.
Principal Component Analysis is a statistical technique
for dimensionality reduction which computation is
based on the SVD of a positive-semidefinite symmetric
matrix. However, it is generally accepted that the
earliest descriptions of PCA were given by Pearson
(1901) and Hotelling (1933).
Gene Golub published the first effective algorithm in
1965. The algorithm provides essential information
about the mathematical background required for the
production of numerical software [40].
SVD has been widely used in many fields in recent
years. Popular application of SVD were found for
denoising, features reduction, and image compression.
Zhao and Ye in 2009 demonstrated that a signal can
be decomposed into the linear sum of a series of
component signals by Hankel matrix-based SVD, and
what these component signals reflect in essence are
the projections of original signal on the orthonormal
bases of M-dimensional and N-dimensional spaces.
The SVD application of Zhao and Ye in 2011 was
oriented to reduce the noise in a signal caused by gear
vibration in headstock.

3.1. Singular Value Decomposition of a Han-
kel Matrix

A novel use of Singular Value Decomposition is
proposed here. The SVD of a Hankel matrix (HSVD) is
used to extract components of low and high frequency
from a nonstationary time series. The decomposition
is evaluated for both linear and nonlinear forecasting.

The process is implemented in three steps: embedding,
decomposition, and enembedding.

3.1.1. Embedding
A Hankel matrix is used in the first step of the

HSVD method. The observed univariate time series
X(n) of real values [x1, . . . ,xN ] is embedded into a
matrix HL×K of Hankel form, which means that all
its skew diagonals are constant,

HL×K =


x1 x2 x3 . . . xK
x2 x3 x4 . . . xK+1
...

...
...

...
...

xL xL+1 xL+2 . . . xN

.

 (18)

H1 =


h11 h12 h13 . . . h1K
h21 h22 h23 . . . h2K

...
...

...
...

...
hL1 hL2 hL3 . . . hLK

.

 (19)

L is called window length and K is computed with

K = N−L+1. (20)

The window length L is an integer, 2 ≤ L ≤ N. The
selection of L is dependent of the time series characte-
ristics and the analysis purpose. There is no a standard
process to select L, therefore some alternatives are
proposed through empirical data in the Application
section.

3.1.2. Decomposition
Let H be an L×K real matrix, then there exist a

L×L orthogonal matrix U, a K×K orthogonal matrix
V, and a L×K diagonal matrix Σ with diagonal entries
λ1 ≥ λ2 ≥ . . . ≥ λL, for L < K, such that UT HV =S
and S=HHT . Moreover, the numbers λ1,λ2, . . . ,λL are
uniquely determined by H.

H = U∗Σ∗VT . (21)

U is the matrix of left singular vectors of H and V
is the matrix of right singular vectors of H. Besides,
the collection (λi,Ui,Vi) is the i-th eigentriple of the
SVD of H. Elementary matrices H1, . . . ,HL of equal
dimension (L×K) are obtained from each eigentriple
(λi,Ui,Vi),

Hi = λi ∗Ui ∗V T
i . (22)
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3.1.3. Unembedding
The unembedding process is developed to extract

the intrinsic components. Each Hi elementary matrix
contains each ith component into its first row and last
column. Therefore the elements of the component Ci
are,

Ci = [Hi(1,1),Hi(1,2), . . . ,Hi(1,K),Hi(2,K), . . . ,Hi(L,K)] ,
(23)

3.1.4. Window Length Selection
The window length is a critical parameter for

HSVD decomposition techniques. The selection of the
effective window length depends on the problem in
hand and on preliminarily information about the time
series. The relative energy of the eigenvalues is used
to identify the effective window length. The eigenvalue
relative energy Λ is computed with the ratio:

Λi =
λi

∑
L
j=1 λ j

(24)

where Λi represents the energy concentration in the ith
eigenvalue. The window length L is an integer with
values 2≤ L≤ N. λ j is the jth singular value.
Commonly the high energy is concentrated in the first
singular value. In spite of in this work is also proposed
the usage of the peaks of energy, it can be observed
through the differentiation of consecutive values of
relative energy. Consider

∆ j = Λi−Λi+1, (25)

where i, j = 1, . . . ,N−1. A plot is an effective tool to
identify the peaks of energy.

3.2. Multilevel Singular Value Decomposition
of a Hankel matrix

Given the need for a method that does not depend
on an effective window length, in this section is de-
signed Multilevel Singular Value Decomposition of a
Hankel matrix (MSVD). MSVD is inspired on Mul-
tiresolution Analysis (MRA) [17], an algorithm com-
monly used in wavelet decomposition. MSVD extracts
components of low frequency and high frequency from
a nonstationary time series which is equivalent to the
components of approximation and detail obtained by
means of wavelet decomposition.
MSVD method is inspired in the pyramidal process

implemented in multiresolution analysis of Mallat Al-
gorithm [17] which was defined for wavelet repre-
sentation. In this method is proposed the multilevel
decomposition of a Hankel matrix. At difference of
HSVD, MSVD implements iterative embedding and
pyramidal decomposition with a fixed window length
L = 2.
MSVD algorithm is summarized as the pseudo code
shown in Figure 1. The input is the observed time
series x of length N, and at the end, two additive and
intrinsic components are obtained as outputs, cL and
cH , which represent the low frequency and the high
frequency component respectively, each one of length
N. MSVD is performed in three steps, embedding
through a Hankel matrix of 2×(N− 1) dimension as
27, decomposition in orthogonal matrices of eigen-
vectors U and V , and singular values λ1,λ2; finally
unembedding from elementary matrices H1 and H2.
MSVD is processed iteratively and it is controlled by
J until the k repetition is done. When the singular
spectrum rate ∆R reaches the asymptotic point the k
value is set. The computation of ∆R is made by means
of the next equations:

∆R j =
R j

R j−1
(26a)

R j =
λ1, j

λ1, j +λ2, j
(26b)

where R j is the Relative Energy of the singular values,
and j = 1,2.
The Hankel matrix has the form:

H =

(
x1 x2 . . . xN−1
x2 x2+1 . . . xN

)
. (27)

The Hankel matrix H in all repetitions will have 2×K
dimension.

4. CASE STUDY

4.1. Data
Three relevant nonstationary time series of traf-

fic accidents are used, the data were collected by
the Chilean police and the National Traffic Safety
Commission (CONASET) from year 2000 to 2014
in Santiago de Chile with 783 weekly registers. This
problem has socioeconomic relevance in planning and
management; besides forecasting based on the prin-
cipal improper behavior of drivers, passengers, and
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pedestrians will contribute highly in prevention tasks.
CONASET has defined one hundred causes of traffic
accidents. In this study case are used the time series of
Injured-G1, which involves 10 main causes of traffic
accidents related with improper behavior of drivers,
passengers, and pedestrians. Detailed information was
shown in Table 1. The full thesis shows the complete
analysis of other groups obtained with the regarding
causes. Figure 2(a) shows the observed time series
Injured-G1, whereas Figure 2(b) show the Fourier
Power Spectrum (FPS). The FPS analysis shown the
signal spectrum and the red noise spectrum. Injured-
G1 presents the highest peak at week 26 at 98% of
confidence level. With the peaks information the AR
order is set as P = 26.

4.2. Decomposition based on HSVD and
compared with Singular Spectrum Analysis

Both preprocessing techniques HSVD and SSA
embed the time series in a trajectory matrix. The initial
window length used is L = N/2, based on the N lenght
of the series. The embedding matrix H is then de-
composed in singular values and singular vectors. The
differential energy of the singular values is obtained
with 25.
In this case, a high energy content was observed
in the first t = 20 eigenvalues. The lowest peaks
of differential energy was used and evaluated to set
the effective window length. Some experiments were
developed examining diverse effective window length
values, finally it was chosen by trial and error from
those energy peaks that were given by the differential
energy of the singular values. Then the effective win-
dow length was set in L = 15, L = 17, and L = 15, for
Injured-G1, Injured-G2, and Injured-G3 respectively.
The embedding process is implemented again with
the effective window L, and the decomposition is
recomputed following the methodology.
The first elementary matrix H1 is computed and it is
used to obtain the low frequency CL component. In
HSVD direct extraction (unembedding) is performed
from the first row and last column of H1. While in SSA,
diagonal averaging is computed over H1. Finally the
component of high frequency is computed by simple
difference.
The components extracted by HSVD and SSA are
shown in Figure 3. The CL components extracted by

HSVD and SSA from all signals are shown in Figure
3a. Long-memory periodicity features were observed
in the CL component. The resultant component of high
frequency is shown in Figure 3b, short-term periodic
fluctuations were identified in the CH component.
Injured-G1 signals show that the principal 10 causes
present the highest incidence between years 2002 to
2005 (weeks 106 to 312), it descends from 2006 until
half 2012 (around week 710), an increment is observed
between weeks 711 and 732 (second semester of 2013
and first semester of 2014).
Prevention plans and punitive laws have been imple-
mented in Chile during the analyzed period, vial edu-
cation, drivers licensing reforms, zero tolerance law,
Emilia’s law, transit law reforms, among others. The
effect of a particular preventive or punitive action is
not analyzed in this application, however the proposed
short-term prediction methodology based on observed
causes and intrinsic components is a contribution to
government and society in preventive plans formula-
tion, its implementation and the consequent evaluation.

4.3. Decomposition based on MSVD and
compared with Wavelet Decomposition

MSVD implements an hierarchical process which
finish when ∆R reaches the asymptotic value. The
Singular Spectrum Rate ∆R for each decomposition
level J are illustrated in Fig. 4, the asymptotic value
is reached when ∆R ≈ 1, and it was observed in the
repetition 16. Therefore the iterative process finish
when iteration 16 was performed, this condition is used
with all time series. The Wavelet Decomposition is
based on Stationary Wavelet Transform (SWT). The
decomposition is implemented through the function
Daubechies of order 2 (Db2) (due to the inaccu-
rate results that were obtained with the other type
of wavelet functions they are not presented). Three
decomposition levels (J = 3) were selected according
with the period fluctuation between 8 and 16 weeks.
Figure 5 shows the components of low frequency and
high frequency obtained with MSVD and SWT. The
cL components extracted by both MSVD and SWT,
show long-memory periodicity features, whereas the
cH components show short-term periodic fluctuations.
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4.4. Prediction through HSVD-AR, SSA-AR,
HSVD-ANN, SSA-ANN

Before prediction, each data set of low and high
frequency has been divided into two subsets, training
and testing; the training subset involves 70% of the
samples, and consequently the testing subset involves
the remaining 30%. Multi-step ahead forecasting was
implemented by means of multiple models in reason
that direct strategy is used. The forecasting accu-
racy is measured with normalized Root Mean Square
Error (nRMSE) and modified Nash-Sutcliffe Efficiency
(mNSE). The results are presented in Table 2. The
results shows that the accuracy decreases as the time
horizon increases. The best accuracy was reached by
using SSA-AR for 1 to 10-week ahead forecasting
while for 11 to 14-week ahead forecasting HSVD-AR
is more accurate. SSA-AR present an average nRMSE
of 0.013 and an average mNSE of 92.7%, it is followed
by HSVD-AR with an average nRMSE of 0.019 and
an average mNSE of 89.2%. The lowest accuracy was
reached by HSVD-ANN with an average nRMSE of
0.047 and an average mNSE of 72.7%. Those blank
spaces corresponds to poor results that were obtained.

4.5. Prediction through MSVD-MIMO and
SWT-MIMO

The MIMO model is implemented to predict
the number of injured people in traffic accidents for
multiple horizon. The Autoregressive model is used
with MIMO, the spectral analysis developed through
FPS informs about the order of the model, it was
shown in Figure 2b. The inputs of the AR model are
the P lagged values of cL and the P lagged values of
cH , and the outputs are the number of injured for the
next τ weeks. The prediction performance is evaluated
with efficiency metrics nRMSE, mNSE, and mIA,
which are presented in Table 3.
From Table 3 and Fig. 10, both models present good
accuracy, however MSVD-MIMO model presents
higher accuracy in comparison with SWT-MIMO.
MSVD-MIMO obtains a significative gain in each
forecasting horizon. The mean gain for 1 to 13 weeks
of MSVD-MIMO over SWT-MIMO is 17.7% in
mNSE and 8.1% in mIA. SWT-MIMO results for
14-weeks ahead prediction are not presented due to
the poor results that were obtained.
The Injured-G1 prediction via MSVD-MIMO for

14-weeks ahead prediction is shown in Figures 8a
and 8b; from figures good fit is observed between
actual and estimated values. Metrics computation
give a nRMSE of 2.9%, a mNSE of 83.3% and a
mIA of 91.6%. The prediction of the same series via
SWT-MIMO for 13-weeks ahead prediction is shown
in Fig. 9; lower accuracy is observed with a nRMSE
of 10.1%,a mNSE of 43.7% and a mIA of 71.8%.

Various empirical applications were implemented
to evaluate the proposed decomposition. Some time
series of traffic accidents and other coming from fishe-
ries domain.

5. CONCLUSIONS

The main contribution of this research are new
models for extracting components of low and high
frequency from a nonstationary time series. Conven-
tional linear and nonlinear models are reinforced with
a potent preprocessing stage which achieves identif-
ying spectral structures of an nonlinear and nonstatio-
nary time series. Two type of spectral signals named
components are extracted, one of low frequency and
the other of high frequency. The components have
the same length as the original signal but they have
different magnitude and fluctuation. The component
of low frequency represents long-memory periodicity
features, whereas the components of high frequency
represent short-term periodic fluctuations.
The proposed methods implemented in the preproces-
sing stage are based on the Singular Value Decompo-
sition of a Hankel matrix. Hankel is a matrix which
is used to embed a discrete and univariate time series.
New elementary matrices can be computed from the
singular values and singular vectors obtained in the
decomposition. Despite this transformation, the matri-
ces structure gave us the assurance that the locations
of the elements of the original data never be altered.
This advantage allowed us the easy identification and
extraction of the elements for each component from
each elementary matrix. Nevertheless the difference of
signals, they keep the original dynamics of the pheno-
mena which is an important feature for prediction.
The proposed methods were evaluated with nonsta-
tionary time series of traffic accidents and fisheries
domains. The data of traffic accidents consist of daily
and weekly observations of quantities of accidents,
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injury and deaths in three Chilean regions, Santiago,
Valparaíso and Concepción, all covering the period
January 1st 2000 to December 31th 2014. While the
data of fisheries consist of monthly catches of anchovy,
hake, sardine, and shrimp in some zones of pacific
ocean coast, some of them covering the last five
decades.
The decomposition method HSVD requires an unique
parameter for its implementation, the window length
(L). Unfortunately the finding of an effective window
length could become frustrating. In this research, the
selection of L is dependent of the singular values
energy obtained with a initial window length L = N/2,
where N is the sample size. The group of singular
values with the largest energy concentration meant for
us the way to obtain the best decomposition. Therefore
the number of singular values with the largest relative
energy concentration informs about the length of the
effective window.
To avoid the limitation of HSVD due to the window
length searching, a new decomposition method called
MSVD was proposed. MSVD means Multilevel Singu-
lar Value Decomposition of a Hankel matrix. MSVD is
the iterative version of HSVD with a constant window
length L = 2. MSVD extracts the components of low
and high frequency through a hierarchical process that
decompose iteratively the component of low frequency
whereas the component of high frequency is the resi-
dual part. MSVD presents simplicity with respect to
other techniques based on singular values by the use
of a fixed window length in the embedding step, and
although MSVD is iterative, the stoping condition is
guarantee.
Singular Spectrum Analysis was also implemented
with comparison purpose. SSA and HSVD implements
the steps of embedding and decomposition, the diffe-
rence among SSA and HSVD is in the step of compo-
nents extraction. SSA implements diagonal averaging
whereas HSVD implements unembedding, both from
the correspondent elementary matrix.
One-step-ahead forecasting and multi-step ahead fo-
recasting models were implemented to valid the pro-
posed decomposition methods. Empirical applications
shown high accuracy by means of all forecasting
models based on HSVD and MSVD. Those models
based on MSVD reaches the highest accuracy for one-
step and multi-step ahead forecasting with an average
MAPE of 0.0011% for one-week ahead forecasting

of Injured persons in traffic accidents and an avera-
ge MAPE of 0.0053 for anchovy and sardine stock.
Conventional ANN-based forecasting gave us low ac-
curacies, for one-week ahead forecasting of Injured in
traffic accidents it was obtained an average MAPE
of 4.1%. Whereas for anchovy and sardine it was
obtained an average MAPE of 14.8%
MSVD-MIMO is the result of the combination of
data preprocessing and linear modelling. The model
obeys three features: nonparametric, low complexity
and reliability. These features guarantee flexibility for
stationary and nonstationary time series, easy imple-
mentation and exactness by the use of a pure AR
model, and reliability by the high accuracy obtained
for multi-step ahead prediction.
MSVD-MIMO was also compared with the perfor-
mance of the conventional wavelet decomposition.
Stationary Wavelet Transform combined with MIMO
(SWT-MIMO) was calibrated by means of the spectral
information of the signal and by trial and error the
Daubechies function was selected. Empirical appli-
cations shown the superiority of MSVD-MIMO over
SWT-MIMO. For 14-weeks ahead forecasting of Inju-
red series, MSVD-MIMO reaches an average mNSE
of 97.7%, whereas SWT-MIMO presents poor results.
For 13-weeks ahead forecasting SWT-MIMO reaches
an average mNSE of 82.6%, and SSA-AR obtains
an average mNSE of 92.9%. On the other hand for
15-months ahead forecasting of anchovy and sardine
stock, MSVD-MIMO reaches an average nNSE of
97.5%, whereas SWT-MIMO presents 95.5%, and
SSA-AR an average mNSE of92.6%. Furthermore
MSVD presents simplicity with respect to SWT by the
additional processing that is required by SWT to select
the wavelet function, and with respect to SSA because
it avoids the setting of an effective window length.
About the contribution to the application domains,
valuable information was identified. For traffic acci-
dents, the ranking technique was applied to detect the
relevant causes of injured people, it was observed the
predominance of those causes related with improper
behavior of drivers, pedestrians and passengers. Un-
wise distance, Inattention to traffic conditions, and
Disrespect to red light are the first important causes of
injured people in traffic accidents in concordance with
previous studies that determine disrespect towards the
road signs a principal cause of traffic accidents. Com-
plementary information was observed about traffic
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accidents conditions with high rate of injured people,
automobiles type, environmental conditions, relative
position, among others. About stock fisheries forecas-
ting, the highest gain of MSVD-MIMO with respect
to SWT-MIMO was observed for 12-months ahead
prediction which is relevant for the annual fleet.

6. FUTURE WORK

The proposed models were evaluated in both do-
mains, traffic accidents and fishing stock, however
there is a large amount of information for future
analysis. Traffic accidents with presence of deceased
and injuries require more studies to support prevention
plans of the government institutions. It is necessary
to carry out new cross and deep analyzes related to
circumstantial elements such as the condition of the
road, atmospheric situation, relative position, vehicles
involved, zone, among others. On the other hand,
climate data captured by drones operating along Chile
in real time, will provide more information for fore-
casting in several productive areas such as the fishery
industry.
The Mining Industry is an area of great socio-
economic impact that can be researched through the
proposed decomposition methods. It has been proven
that through the study of mechanical vibrations, ano-
malous signals can be observed in critical rotational
machinery. Analysis in the frequency domain and arti-
ficial intelligence have been commonly implemented
to identify the spectral features of signals coming
from vibrations. By means of our proposed methods
a mechanical vibration could be decomposed into its
endogenous components of low and high frequency,
normal or anomalous, which coexist in the same signal
and that are not clearly appreciable by conventional
methods. Once the components are separated the fault
is detected. With the anomalous components it is
possible to diagnose the severity of the damage and
the implementation of new forecasting models.

7.
ACKNOWLEDGMENTS

I want to thank principals of Pontificia Universidad
Católica de Valparaíso by the scholarship that granted
me. My special thanks to Vicerrectoría de Investiga-
ción y Estudios Avanzados by the thesis term grant.

REFERENCIAS

[1] Chatfield C., : The Analysis of Time Series: An Introduction,
Sixth Edition. Taylor & Francis Group, LL. (2003)

[2] Joo T. and Kim S.: Time series forecasting based on wavelet
filtering. Expert Systems with Applications. 42(8) 3868 -
3874. (2015)

[3] Wayne A. Woodward and Henry L. Gray and Alan C. Elliott:
Applied Time Series Analysis. Taylor & Francis Group.
(2012)

[4] George E.P. Box and Gwilym M. Jenkins and Gregory C.
Reinsel and Greta M. Ljung: Time Series Analysis: Forecas-
ting and Control, fifth edition. Wiley & Sons. (2009)

[5] Stewart G.: On the Early History of the Singular Value
Decomposition. SIAM Review, 35(4) 551 - 566. (1993)

[6] R.E. Abdel-Aal and A.Z. Al-Garni: Forecasting monthly
electric energy consumption in eastern Saudi Arabia using
univariate time-series analysis. Energy. 22(11) 1059 - 1069.
(1997)

[7] Vaseghi S.: Advanced Digital Signal Processing and Noise
Reduction Third Edition. Wilew & Sons. (2006)

[8] Narayanan P. and Basistha A. and Sarkar S., and Kamna
S.: Trend analysis and ARIMA modelling of pre-monsoon
rainfall data for western India. Comptes Rendus Geoscience.
345(1) 22 - 27. (2013)

[9] Hassan J.: ARIMA and regression models for prediction of
daily and monthly clearness index. Renewable Energy. 68(0)
421 - 427. (2014)

[10] Cho V.: Tourist forecasting and its relationship with leading
economic indicators. Journal of Hospitality and Tourism
Research. 25(0) 399 - 420. (2001)

[11] Li G. and Shi J.: On comparing three artificial neural
networks for wind speed forecasting. Applied Energy. 87(7)
2313 - 2320. (2010)

[12] Laboissiere L., Fernandes R., and Lage G.: Maximum
and minimum stock price forecasting of Brazilian power
distribution companies based on artificial neural networks.
Applied Soft Computing. 35(0) 66 - 74. (2015)

[13] Vapnik V.: The Nature of Statistical Learning Theory.
Springer - Verlag, 119 - 156. (1995)

[14] Levis A., Papageorgiou L.: Customer Demand Forecasting
via Support Vector Regression Analysis. Chemical Enginee-
ring Research and Design, 83(8) 1009 - 1018. (2005)

[15] Abdollahzade M., Miranian A., Hassani H., Iranmanesh
H.: A new hybrid enhanced local linear neuro-fuzzy model
based on the optimized singular spectrum analysis and its
application for nonlinear and chaotic time series forecasting.
Information Sciences, 295(0) 107 - 125. (2015)

[16] Grossmann A., Morlet J.: Decomposition of hardy fun-
ctions into square integrable wavelets of constant shape.
SIAM Journal on Mathematical Analysis, 15 (4) 723 - 736.
(1984)

[17] Mallat S.: A Theory for Multiresolution Signal Decompo-
sition: The Wavelet Representation. IEEE Transactions on
pattern analysis and machine intelligence, 11 (7) 674 - 693.
(1989)

[18] Daubechies I.: Orthonormal bases of compactly supported
wavelets. Communications on Pure and Applied Mathema-
tics, 41(7) 909 - 996. (1988)



15

[19] Seo Y., Kim S., Kisi O., Singh V.: Daily water level forecas-
ting using wavelet decomposition and artificial intelligence
techniques. Journal of Hydrology, 520 (0) 224 - 243. (2015)

[20] Sun Y., Leng B., Guan W.: A novel wavelet-SVM short-
time passenger flow prediction in Beijing subway system.
Neurocomputing, 166 (0) 109 - 121. (2015)

[21] Bai Y., Li Y., Wang X., Xie J., Li C.: Air pollutants
concentrations forecasting using back propagation neural
network based on wavelet decomposition with meteorolo-
gical conditions. Atmospheric Pollution Research, 7 (3) 557
- 566. (2016)

[22] Pektas A., Cigizoglu, K.: ANN hybrid model versus ARI-
MA and ARIMAX models of runoff coefficient. Journal of
Hydrology, 500 (0)21 - 36. (2013)

[23] Fahmy A., El-Tantawy M., Gobran, Y.: Using artificial
neural networks in the design of orthotropic bridge decks.
Alexandria Engineering Journal. (2016)

[24] Wu Z., Huang N.: Ensemble empirical mode decompo-
sition: a noise assisted data analysis method. Advances in
Adaptive Data Analysis, 1(1) 1 - 41. (2009)

[25] Myung I.: Tutorial on maximum likelihood estimation.
Journal of Mathematical Psychology, 47(1) 90 - 100. (2003)

[26] Freeman J., Skapura D.: Neural Networks, Algorithms, Ap-
plications, and Programming Techniques. Addison-Wesley.
(1991)

[27] Golyandina N., Nekrutkin V., Zhigljavsky A.: Analysis of
time series structure. Chapman & Hall/CRC. (2001)
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Normalize time series X = X ./max(abs(X))
Set the counter J = 0, and signal to be decomposed A0 = X
while (J < k )
J = J+1

Embed the signal H= hankel(A0,2)
Decompose the matrix U,[λ1 λ2],V]=svd(H)
Compute elementary matrix 1: H1 =U1λ1V ′1
Compute elementary matrix 2: H2 =U2λ2V ′2
Extract the low frequency signal of level J,

AJ =[H1(1,1 : end) H1(2,end)]
Extract the high frequency signal of level J,

dJ = [H2(1,1 : end) H2(2,end)]
Update the decomposition signal A0 = AJ

end while
Get the low frequency component CL =AJ
Get the high frequency component CH = ∑

J
i=1 di

Figura 1. Multilevel SVD algorithm
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Figura 2. (a) Injured-G1, (b) FPS of Injured-G1. The thick
solid line is the global wavelet spectrum for Injured-G1,
while the dashed line is the red-noise spectrum
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Figura 3. Injured-G1 components (a) Low frequency com-
ponents via HSVD and SSA (b) High frequency compo-
nents via HSVD and SSA
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Figura 4. Decomposition Levels vs Singular Spectrum Rate
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Figura 6. nRMSE Results for multi-week ahead forecasting
of Injured-G1

horizon (weeks)
1 2 3 4 5 6 7 8 9 10 11 12 13 14

m
N
S
E
 
(
%
)

50

53

56

59

62

65

68

71

74

77

80

83

86

89

92

95

98
100

HSVD-AR

SSA-AR

HSVD-ANN

SSA-ANN

Figura 7. mNSE Results for multi-week ahead forecasting
of Injured-G1
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Figura 8. Injured-G1 Prediction by MSVD-MIMO (a) Observed vs Predicted, (b) Linear Fit
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Figura 9. Injured-G1 Prediction by SWT-MIMO (a) Observed vs Predicted, (b) Linear Fit
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Figura 10. Multi-step forecasting results, comparison for Injured-G1

Cuadro 1
Causes of Injured in Traffic Accidents, Group 1 and Group 2

Category Num Cause Importance
imprudent driving

1 Unwise distance 1
2 Inattention to traffic conditions 2
3 Disrespect to pedestrian passing 8
4 Disrespect for give the right of way 9
5 Unexpected change of track 10
6 Improper turns 11
7 Overtaking without enough time or space 14
8 Opposite direction 18
9 Backward driving 19

disobedience to signal
10 Disrespect to red light 3
11 Disrespect to stop sign 4
12 Disrespect to give way sign 6
13 Improper speed 13

alcohol in driver
14 Drunk driver 7
15 Driving under the influence of alcohol 15

recklessness in pedestrian
16 Pedestrian crossing the road suddenly 5
17 Reckless pedestrian 12
18 Pedestrian outside the allowed crossing 17

recklessness in passenger
19 Get in or get out of a moving vehicle 16

alcohol in pedestrian
20 Drunk pedestrian 20
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Cuadro 2
Multi-step ahead forecasting results for Injured-G1 via Direct Strategy

nRMSE mNSE(%)
h(week) HSVD-AR SSA-AR HSVD-ANN SSA-ANN HSVD-AR SSA-AR HSVD-ANN SSA-ANN

1 0.008 0.001 0.01 0.002 95.7 99.3 93.7 99.1
2 0.011 0.003 0.02 0.003 93.6 98.4 89.4 97.8
3 0.015 0.005 0.03 0.007 91.7 97.4 83.0 96.5
4 0.018 0.007 0.04 0.011 90.1 96.3 79.0 93.8
5 0.020 0.009 0.04 0.014 89.0 95.0 78.8 91.6
6 0.021 0.011 0.04 0.018 88.1 93.6 75.0 88.4
7 0.023 0.014 0.06 0.027 87.0 92.1 67.0 87.1
8 0.024 0.017 0.06 0.036 86.8 90.7 64.4 79.3
9 0.024 0.019 0.07 0.041 86.9 89.3 62.0 75.6
10 0.024 0.022 0.07 0.056 86.8 87.9 61.9 73.5
11 0.023 0.024 0.07 0.056 87.1 86.7 61.5 70.7
12 0.022 0.026 0.07 0.060 87.7 85.6 56.5 67.8
13 0.020 0.028 0.07 - 89.1 84.9 57.7 -
14 0.016 - 0.06 - 91.0 - - -

min 0.008 0.001 0.011 0.002 86.8 84.9 56.5 67.8
max 0.024 0.028 0.074 0.06 95.7 99.3 93.7 99.1

mean 1-13 0.19 0.013 0.047 0.028 89.2 92.7 72.7 85.1

Cuadro 3
Multi-step MIMO forecasting results, nRMSE, mNSE, and mIA for Injured-G1

RMSE mNSE(%) mIA(%)
h(week) MSVD SWT MSVD SWT MSVD SWT

MIMO MIMO MIMO MIMO MIMO MIMO
1 0.0021 0.34 99.9 98.0 99.9 99.0
2 0.0030 0.29 99.9 98.3 99.9 99.2
3 0.0007 0.44 99.9 97.6 99.9 98.8
4 0.0030 0.44 99.9 97.6 99.9 98.8
5 0.0003 0.56 99.9 96.8 99.9 98.4
6 0.0024 0.51 99.9 97.1 99.9 98.6
7 0.0041 0.63 99.9 96.5 99.9 98.3
8 0.0125 0.61 99.9 96.6 99.9 98.3
9 0.0366 5.6 99.8 67.8 99.9 83.9
10 0.0990 4.8 99.4 71.6 99.7 85.9
11 0.2512 6.5 98.5 64.2 99.3 82.1
12 0.6009 5.9 96.6 66.6 98.3 83.3
13 1.3685 10.13 92.2 43.7 96.1 71.8
14 2.9872 - 83.3 - 91.6 -

Min 0.0003 0.29 83.3 43.7 91.6 71.8
Max 2.9872 10.1 99.9 98.3 99.9 99.2

Mean 1-13 step 0.1834 2.8 98.9 84.1 98.9 92.0
Mean 1-14 step 0.3837 - 97.8 - 98.9 -
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